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Introduction
Fertility preservation provides the pregnancy chances at the right 

time in patients or those who want to postpone childbearing for social 
or financial reasons. The majority of patients who can benefit from 
fertility preservation techniques are cancerous patients. Irreversible 
follicular and oocyte damage due to chemotherapy and radiotherapy led 
to the fertility loss in women so that 50% of primordial follicles could 
be destroyed following radiation [1]. There are several approaches for 
fertility preservation in female cancerous patients including oocyte or 
embryo cryopreservation and ovarian tissue banking followed by tissue 
transplantation or one or two steps follicular culture [2-4]. 

Embryo cryopreservation has been widely used in many species 
[5-8] and the oocytes cryopreservation as an alternative method is 
accounted for more than 200 live births [9-12]. Application of oocyte 
cryopreservation, however, needs to be more improved in animal 
species [13]. In prepubertal girls or cancerous patients where the 
future fertility is desired, the ovarian tissue cryopreservation is more 
promising. The human ovarian cortex contains the vast majority of 
the follicular reserve that is less susceptible to cryodamage. Cortical 
ovarian tissue can ortotopically or heterotopically be autotransplanted 
and also can be used for follicle culture. In in vitro culture of follicles 
both follicle development and oocyte health supported during long-
term culture [4].

Considering the importance of female fertility preservation in 
patients at risk of compromised fertility, this mini-review will discuss 
two main approaches proposed in cancerous patients. 

Transplantation of Ovarian Tissue 
Autotransplantation

In cancerous patient, when there is no risk of ovarian metastatic 
involvement, ovarian tissue can be transplanted otherwise an alternative 
approach should be considered such as one or two step follicular 
culture. There are mainly two strategies including transplantation of 
whole ovary or cortical ovarian tissue reimplantation.

In whole ovary transplantation, despite reduction in ischemia and 
prolonged graft longevity, there are difficulties in cryopreservation and 

supplying the required nutrients to deeper parts considering the size 
of ovary. Nonetheless, transplantation of frozen-thawed whole ovaries 
in sheep and subsequent oocyte aspiration has resulted in embryo 
development up to the 8-cell stage [14]. Transplantation of whole 
cryopreserved ovaries with microanastomosis of the ovarian vascular 
pedicle resulted in pregnancy and live birth in mouse and sheep [15,16]. 
The whole human ovary transplantation between monozygotic twins 
who were discordant for polycystic ovarian failure led to the birth of 
healthy baby [17]. 

In second strategy, the cortical ovarian tissue has been successfully 
transplanted into mouse, sheep, and monkey [18-20]. The first 
successful human ovarian tissue transplantation was performed 
between monozygotic twins in 2005 [21]. The results of ovarian cortex 
reimplantation were more promising as such ovarian activity restoration 
was observed 3.5 months after reimplantantation and successful 
pregnancy was achieved 9 month after orthotopic reimplantation of 
ovarian cortex [22]. Ovarian cortex autotransplantation to a peritoneal 
pocket in the broad ligament led to ovarian function recovery 24 
weeks after transplantation and normal pregnancy following the fifth 
stimulation attempt [23]. So far, 30 live births have been reported after 
orthotopic reimplantation of cryopreserved ovarian tissues [24]. On the 
other side the heterotopic transplantation has resulted in production of 
a four-cell embryo leading to one pregnancy [25].

Xenotransplantation 
Since in human autotransplantation there are some limitations 

in assessment of physiological aspects of follicular development, 
xenotransplantation of ovarian tissue to immunodeficient animals 
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Abstract
The banking of ovarian tissue containing large number of primordial follicles has become widespread as one of 

the promising fertility preservation options in young cancerous patients. There are substantially three approaches 
in female fertility restoration including embryo and oocyte freezing as well as ovarian tissue cryopreservation. Two 
former methods require ovarian hyperstimulation which in turn have their own side effects and limitations. The third 
option as the only feasible approach in prepubertal girls allows immediate cancer treatment. In third method, two 
main approaches are proposed. One is ovarian tissue transplantation which may not be an applicable approach for 
all patients especially where there is a chance of reintroducing malignant cells. The second approach with greater 
interest is one or two steps ovarian follicular culture followed by in vitro maturation of resulting oocytes and the 
subsequent IVF and IVC procedures. Among various studies conducted in different species, following follicle culture, 
the live birth has been achieved only in mouse. In this review various aspects of the studies done in this area would 
be challenged.
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provides the opportunity to perform such studies on survival, 
morphology and functional recovery of ovarian follicles. 

The oocytes in bovine secondary follicles grown in Severe Combined 
Immune Deficiency mice (SCID) were able to resume meiosis and 
progress to the second metaphase [26]. Xenografting of pig vitrified-
warmed and fresh ovarian tissues in SCID mice led to primordial follicles 
development to the secondary and antral stages, respectively, after two 
months. In between, though the primordial follicles could maintain 
their developmental competence after vitrification and warming, their 
developmental rate was slower than that of fresh counterparts [27]. 
Fresh and frozen-thawed human ovarian tissue xenograft to SCID mice 
has increased the proportion of growing follicles as well as the growth of 
follicle to the antral stage. There was, however, no significant difference 
in oocyte or follicle diameters between fresh and frozen-thawed tissue 
grafts. Theca layer in antral follicles of frozen-thawed grafted tissue, 
however, was significantly thinner than fresh tissue [28]. 

Xenografting of vitrified-warmed bovine follicles into SCID mice 
has led to the growth of primordial and secondary follicles to the antral 
stage, indicating the developmental ability of follicles after vitrification 
[29]. The survival and development of xenografted human follicles into 
antral stages after six months was indicated the capacity of oocytes to 
survive for long term [30]. Xenotransplantation of fresh isolated human 
follicles into nude mice resulted in primordial follicles activation and 
formation of follicles surrounded by stroma-like tissue of human 
origin [31]. Bovine isolated preantral follicles embedded in granulosa 
and stroma cells matrix were able to survive and grow 14 days after 
renal subcapsular xenotransplantation. This matrix provides an in 
vivo model to study preantral follicles development [32]. Observation 
of infiltrating blood capillaries after xenograft of an alginate-matrigel 
matrix containing isolated ovarian cells was another promising event in 
developing a biodegradable scaffold [33]. 

One major limitation in grafted ovarian tissue is a considerable 
follicles loss. Ischemia and the consequent apoptosis that occurs before 
efficient revascularization is the cause of this reduction, as >50% of 
primordial follicles are lost following ovarian transplantation. The loss 
of follicles may also be due to premature activation of the transplanted 
follicular pool [31]. Lack of antimullerian hormone in ovarian grafts is 
proposed for premature follicular activation [34]. Graft pretreatment 
with vascular endothelial growth factor A (VEGF-A) and vitamin 
E besides host treatment with vitamin E and gonadotropins could 
improve the survival of grafted human ovarian tissue by reducing 
apoptosis [35]. Additionally, the ischemic injury was decreased by 
sphingosine-1-phosphate supplementation through acceleration of 
angiogenic process and reduction of tissue hypoxia [36]. VEGF and 
fibroblast growth factor b (bFGF), especially in combination, through 
triggering angiogenesis and reducing apoptosis could increase the 
survival of transplanted human ovarian tissue [37]. 

Follicle Culture 
Ovarian tissue culture

Since the early 1990s, ovarian follicle culture techniques have been 
developed with the aim of achieving competent oocytes. In some species 
such as mouse the culture of ovarian follicles in the form of whole ovary 
culture is executable. Moreover, the small size and soft texture of the 
ovaries provide the opportunity to achieve intact follicles following 
enzymatic digestion. In contrast, in human and most domestic species, 
the ovaries are too large to be organ-cultured, and the toughness of 
ovarian stroma impairs (compromises) the follicle intactness following 
enzymatic dissociation. To conquer these problems, an in vitro system 

was developed for culturing small pieces of ovarian cortex prior to 
follicle isolation. Cortical pieces were cultured in medium supplemented 
with serum plus insulin, transferrin, and selenium (ITS) where the 
primordial follicles were activated to become primary follicles. Though, 
in ovarian cortical strip culture, the follicles were deprived from the 
in vivo endocrine and paracrine factors, the follicles were received 
the effects of follicle-stromal interactions. Removing stromal cells and 
culturing the flattened tissues led to the greater activation and faster 
follicles growth [38]. 

Hormones and growth factors in tissue culture

Studies on animal models considering the effects of hormones and 
growth factors on follicular development and survival have widely 
provided a basis for human follicle culture experiments. 

In human ovarian tissue culture, ascorbic acid and cyclic adenosine 
monophosphate have been used to prevent apoptosis [39]. The positive 
effects of insulin growth factor I and II (IGF-I and II) in reducing 
atresia, increasing growing follicles and follicular integrity has been 
established [40]. There are also evidences indicating the promontory 
effect of FGF on human follicle development as well as the stimulatory 
effect of growth and differentiation factor 9 (GDF9) on follicle integrity 
and primordial follicle activation [41,42]. In between, anti mullerian 
hormone has an inhibitory effect on human ovarian follicular 
development by suppressing primordial follicle activation [43]. 

Studies in animal have indicated the positive effect of GDF9 on 
ultrastructural integrity of goat preantral follicles and primordial 
follicles activation [44]. The presence of follicle stimulating hormone 
(FSH) and FGF-2 in ovarian tissue culture has shown the promotory 
effects of FSH on percentage of the primary follicles. FSH alone or 
combined with FGF-2 increased the growth and integrity of caprine 
preantral follicle [45]. In cattle, FSH in combination of GDF-9 or bFGF 
has increased the rate of normal follicles and decreased the rate of 
apoptotic cells [46]. Presence of indol acetic acid (IAA), EGF, and FSH 
has maintained ultrastructural integrity of sheep primordial follicles 
and oocytes [47]. In mice, culture of prepubertal ovarian explants with 
R-spondin2, stem cell growth factor, has promoted primary follicles 
activation [48]. 

Isolated follicle culture 

In culturing ovarian tissues, as the follicles develop to the secondary 
stage the cortical tissue environment becomes inhibitory to further 
growth. Therefore, ovarian tissue culture cannot support follicle 
development to the more advanced stages so that a multi-step culture 
system is required to support further development. Ovarian follicles 
can be mechanically or enzymatically isolated from the cortex and 
then cultured for further development [38]. In human, considering the 
toughness of ovarian cortex, mechanical isolation of intact primordial 
follicles is difficult and enzymatic digestion is more appropriate.

For isolated follicles culture, two approaches have been proposed 
including two- and three-dimensional culture systems. In two-
dimensional culture system, referred to attached follicle approach, 
concurrent with follicular development the proliferating granulosa cells 
attach to the plate and migrate away from the oocyte. Therefore, the 
granulose cells are not able to support properly the follicle development 
because of their spatial disarrangement. In contrast, in three 
dimensional culture system, the follicle is able to maintain its three-
dimensional architecture as the follicular growth occurs radially from 
the center of the follicle. This structure provides mechanical support 
which is essential for maintaining cell–cell contacts and paracrine 
signaling [49]. 
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There are various materials to maintain 3D architecture such as 
natural (e.g. collagen) and synthetic (e.g. alginate) hydrogels. Alginate 
encapsulation due to its flexibility and partial rigidity can mimic the 
extracellular matrix. This 3D architecture besides facilitating molecular 
exchange between the follicle and the culture medium can provide the 
proper conditions for cell proliferation and antrum formation [50,51].

Two dimensional follicle culture 

Although this system has been successful in production of live 
murine pups, it has not been successful in bovine, ovine, and human 
species. In human and large animals to maintain the communication 
between the oocyte and granulosa cells, which is necessary for follicular 
development, is more difficult due to considerable size of follicle and 
the longer time required to culture. Two-dimensional culture of human 
follicles has shown the high level of follicular atresia due to loss of 
connections between the oocyte and the granulosa cells [52,53]. In 
mouse, two-step culture system, including an 8-day culture of whole 
newborn ovaries followed by culture of isolated secondary follicles and 
the subsequent culture of obtained oocytes has resulted in production 
of normal offspring [54].

Three dimensional follicle culture 

Experience with primordial and primary follicles: The two-step 
primordial and primary follicles culture in serum free media covering 6 
days culture of human ovarian cortical strip followed by 4 days culture 
of isolated follicles resulted in formation of antrum in cultured follicles 
[38]. 

In 3-dimentional culture system, among different contributing 
factors, the type and rigidity of follicular extracellular matrix by 
maintaining the connection between oocyte and granulosa cells and 
regulation of numerous cellular processes has an important role in 
follicle development. Seven days culture of frozen-thawed human 
primordial follicles in alginate hydrogel 1% led to an increase in 
follicle size with survival rate of 90% [55]. Long term culture of ovine 
primary follicles in fibronectin-coated wells in serum-free medium 
resulted in follicular progression to the secondary follicle stage [56]. 
Encapsulating the macaque primary and secondary follicles in alginate 
and fibrin alginate promoted the follicle development into antral stage. 
In between, the culture of secondary follicle in alginate yielded an MII 
oocyte which after fertilization could further develop to morula stage. 
Depends on developmental stage of follicle, the type of scaffold has an 
important effect on subsequent follicle development [57]. Culturing 
macaque primordial follicles in different concentrations of alginate 
demonstrated 0.5% alginate could maintain the integrity of cultured 
follicles for up to 3 days, while the integrity was lost after 6 days. In 
contrast, follicular integrity could be maintained in 2% alginate up to 
sixth day. Therefore, in order to culture macaque primordial follicles, a 
more rigid environment was needed to support follicle growth in vitro 
[58].

In between, hormones and growth factors through endocrine, 
paracrine, and autocrine mechanisms have major role in follicle 
development. In bovine, primary follicles culture in presence of 
gonadotropins and growth factors during 21 days has optimized the 
culture system to support follicle growth to antral stage [59]. Considering 
to the paracrine mechanism, it would be expected that group culture 
of follicles could better support the follicle growth compared to single 
culture system. In vitro culture of sheep primordial follicles in higher 
densities (50 or 100 lectin-aggregated follicles per well) has significantly 
increased the diameter and survival of oocytes and induced granulosa 
cell differentiation [60]. In mouse, group culture of primary follicles has 

increased the growth and survival of follicles leading to antral follicles 
formation containing meiotically competent oocytes [61]. 

Any follicular growth system should be able to promote quiescent 
primordial follicles to grow within ovarian cortical tissue. To this end, 
and considering the negative regulatory effects of PTEN and FOXO3, 
as inhibitors of primordial follicle activation, application of their 
inhibitors may promote the growth of human and mouse follicular 
reserves [62,63]. It has also been established that inhibition of mTOR, 
mammalian target of rapamycin, may decrease human primordial 
follicles activation, leading to oocyte loss in growing follicles [64].

Experience with preantral follicle: Until recently the work has 
focused on secondary follicles which are less abundant in adult ovaries. 
Factors controlling in vitro follicular development are including extra 
cellular matrix (ECM) and culture condition that regulate numerous 
cellular process.

Structural and biochemical design of the ECM has an influence 
on growth of follicles. Alginate has been used successfully in preantral 
follicle culture. Culture of mouse encapsulated secondary follicles 
within alginate matrix could support follicle development and resulted 
in oocyte maturation required for fertilization and live birth [65,66]. 
Antral follicles have also been achieved through 30 days culture of 
human fresh secondary follicles in alginate in the presence of FSH [50]. 
Macaque secondary follicle culture in alginate yielded an MII oocyte 
that following IVF could cleave and reach the morula stage [57]. 

Fibrin alginate can also be used in preantral follicle culture. As the 
follicle expands it can produce proteases which in turn through fibrin 
degradation lead to the reduction of compressive force and support 
volume increase concurrent with follicular growth. Culture of mouse 
secondary follicles in alginate and fibrin alginate showed that the rate 
of meiotically competent oocytes produced by culture in fibrin alginate 
was greater than alginate alone [51]. The progression of mouse follicles 
to antral stage in fibrin alginate after aprotinin removal indicate that 
delay in fibrin degradation by protease inhibitors may be suitable for 
smaller follilcles that require longer culture time [67]. Semidegradable 
fibrin-alginate matrices allowed the growth of baboon preantral follicle 
to the antral stage in an FSH-independent manner [68]. Apart from 
commonly used matrix (alginate), the application of hyaluronan, in 
mouse, could increase the survival rate and germinal vesicle breakdown 
[69]. 

In follicle culture, the ovarian cycle stages during which follicles are 
collected as well as the physical properties of the matrix are important. 
Culture of monkey secondary follicles throughout 30 days showed 
the higher survival rate and growth rate in follicles obtained from 
prepubertal and adult monkeys, respectively [70]. In another study in 
monkey, culture of follicles in alginate scaffold, obtained during early 
follicular phase had a higher survival rate than those collected during 
the luteal phase [71]. In mouse, 0.25% and 0.5% alginate could better 
support the growth of follicles and antrum formation compared to the 
higher alginate concentrations despite the lack of difference in survival 
rates and oocyte developmental competence [72]. 

Hormones and growth factors in preantral follicle culture: 
Besides the impact of used system on follicular culture, the contents of 
culture media including gonadotropins and growth factors are effective 
in follicular development. 

Concerning the effects of gonadotropins on follicular culture, 
6-days culture of sheep follicles in the presence of FSH and thyroxin 
has greatly improved the proportion of matured oocyte [73]. In 
prepubertal monkey, the culture of follicles in presence of LH after 30 
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days had a positive effect on follicle diameter [70]. Interestingly, while 
the application of FSH, alone, had a positive effect on follicular growth, 
medium supplementation with both FSH and LH had a lower effect 
[71]. No follicles were survived after forty days culture of alginate-
encapsulated primate secondary follicles in the absence of rhFSH 
[74]. In macaque, the highest survival rate of secondary follicles was 
observed in presence of high or medium FSH concentrations. FSH had 
different effect on follicular steroidogenesis based on its concentration. 
While, steroid production by growing follicles was stimulated in the 
presence of high FSH concentrations, this production at low FSH 
concentrations was promoted by LH [75]. In baboon, FSH even had 
a negative influence on preantral follicular health by disrupting the 
integrity of oocyte and cumulus cells connections so that the growing 
follicles could produce MII oocytes with normal spindle structure in 
the absence of FSH [68]. From above, it could be concluded that despite 
the positive effects of FSH on preantral follicular development, in many 
species, there is an exception so that in baboon, it had a negative effect 
on preantral follicular growth. 

In caprine, while the growth of both small and large follicles was 
stimulated by the presence of growth factors, FSH could stimulate 
only the development of small but not large preantral follicles [76]. 
The culture of buffalo preantral follicles in the presence of growth 
factors and FSH resulted in follicle survival for up to 20 days and 
early antrum formation. In meantime, IGF-I supplementation had a 
significantly positive effect on growth and survival of cultured follicles. 
However, the results were inversed when IGF-I was accompanied with 
bFGF [77]. In sheep, supplementation of preantral follicles culture 
medium with growth factors and hormones (ITS, IGF-I, insulin and 
GH) could properly support follicular development so that IGF-I 
in combination with GH had the best effect. Though, the cultured 
oocytes in any concentration of TGF failed to develop to MII stage [78]. 
Human isolated secondary fol¬licles undergo differentiation after a 4 
days in vitro culture in the presence of activin [38]. In feline, 14-days 
culture of follicles in the presence of activin A promoted granulosa 
cell proliferation and preantral follicles growth and viability whereas 
no beneficial effects was observed by thyroxin supplementation [79]. 
There is also evidence indicating the effect of nitric oxide on preantral 
follicle culture. As shown, nitric oxide depends on its concentration 
could play a dual role on follicle growth and survival, whereas the 
lower doses could stimulate the follicle survival, growth, and antrum 
formation, the higher concentrations had an inhibitory effects [80]. 
Moreover, group culture of goat preantral follicles, increased the rates 
of follicular survival and growth as well as the number of grown oocytes 
and meiosis resumption [81].

Besides the content of culture medium, the culture condition, e.g. 
oxygen tension, has an effect on follicle development. It was found that 
20% O2 was more efficient than 5% in goat preantral follicular survival 
and growth and resumption of oocyte meiosis throughout 30 days 
culture [82]. In macaque, the effects of various concentrations of fetuin 
and O2 on encapsulated secondary follicle showed the highest follicular 
survival rate in the presence of 1 mg/ml fetuin at 5% O2 [75].

Follicle co-culture
Co-culturing of buffalo preantral follicles with somatic cells led 

to the higher growth rate and survivability [83]. In mouse, follicles co 
cultured with stormal cells grew more with the greater survival rate 
[84]. Co-culture of mouse alginate encapsulated follicles with mouse 
embryonic fibroblast (MEF) promoted the growth of secondary and 
primary follicles to antral stage after 14 days while the follicles were 
degenerated, within 6-10 days, in the absence of fibroblasts. In between, 

survival rate of 100-µm follicles was significantly higher than 70-µm 
follicles [85]. The presence of MEF and media supplementation with 
activin A especially when used together had a positive effect on growth, 
survivability, and hormonal production of preantral follicles. However, 
no significant differences were observed in antrum formation, ovulation 
rate, and subsequent embryonic development [86]. 

Follicle development evaluations: There are numerous criteria 
which might be considered in assessment of follicular development 
including follicule survival and growth, steroidogenesis, production 
of paracrine/autocrine factors, the ability of oocyte to mature, and 
the pattern of genes expression. Follicle survivability can be identified 
through assessment of basement membrane intactness, presence of 
granulosa cells, and the presence of round and centrally located oocyte 
with a visible zona pellucida. The in vitro follicular production of 
endocrine factors such as progesterone (P4), androstenedione (A4), 
and estradiol (E2), as well as paracrine/autocrine factors, such as anti-
Müllerian hormone (AMH) and vascular endothelial growth factor 
(VEGF) that positively correlates with follicle growth and development, 
might be considered as other criteria. The nuclear maturational status 
of oocytes derived from in vitro antral follicles following 34 h hCG 
treatment can be considered as another criterion. In performed studies, 
no difference was observed in gene expression between the in vitro 
and in vivo-developed antral follicles in major steroidogenic enzymes 
except for the upregulation of low density lipoprotein receptor gene 
that might be related to the prolonged exposure to exogenous FSH. 
TheVEGF downregulation and anti-apoptotic factors upregulation 
in in vitro-developed primate antral follicles compared to in vivo-
derived ones might indicate the influence of culture conditions on gene 
expression [87].

Conclusion 
The application of ovarian tissue grafting or culture of isolated 

follicles followed by in vitro production of embryos has their own 
benefits and defects. Nonetheless, autotransplantation of thawed 
ovarian tissue has been the only method that resulted in birth of healthy 
baby. The major drawback of this method, probable re-introduction 
of cancer cells, has forced the investigators to think of other methods 
such as multi-steps ovarian follicular culture. In this method despite 
the remarkable reduction in risk of cancer cells transmission, because 
of our inadequate knowledge about follicular development and its 
complexity, no proper system has been fully optimized to meet all 
challenges posed to extended human follicle growth in vitro. Therefore 
an introduction of a practical and reliable method has remained to be 
further investigated.
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