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Abstract
Assisted reproduction techniques for infertile men with non-obstructive azoospermia require a sufficient number of func-
tional germ cells produced in vitro. Understanding the mechanisms that allow the resumption of spermatogenesis outside 
the testicular environment is crucial for fertility preservation in these patients. A review of the literature was conducted 
using databases such as PubMed, Scopus and Web of Science, with keywords including “spermatogonial stem cell,” “germ 
cells,” “male factor infertility,” and “enrichment and propagation of SSCs in vitro.” Currently, two models—“in vivo” and 
“in vitro”—have been developed for producing haploid germ cells. The “in vivo” models include spermatogonial stem cell 
transplantation and testicular xenograft techniques. In contrast, the “in vitro” models consist of conventional culture systems, 
organ culture, and three-dimensional culture systems, all designed to induce spermatogenesis in vitro. These culture systems 
enable the simulation of the seminiferous epithelium in vitro, which facilitates better regulation of cell-signaling pathways 
that control the self-renewal and differentiation of SSCs. This review provides up-to-date information on the organization 
of SSCs, focusing on the identification, proliferation, and differentiation of spermatogonia in vitro.

Keywords  Germ Cells · Spermatogonial stem cell · Propagation · Spermatogenesis · Manipulation

Introduction

Spermatogonial stem cells (SSCs) are unipotent adult stem 
cells responsible for maintaining male fertility throughout 
life. Among adult stem cells, SSCs are unique because they 
divide mitotically and contribute genes to subsequent gen-
erations, making them ideal targets for genetic manipulation 
[1]. These specific germ cells (GCs) can rapidly proliferate 
when the testes are damaged by chemicals or radiation; how-
ever, under normal physiological conditions in vivo, they 
divide slowly to produce both stem and progenitor cells [1, 
2]. When cultured in vitro under appropriate conditions, 
SSCs can acquire pluripotency and differentiate into deriva-
tives of the three embryonic germ layers [3]. It is well docu-
mented that the transplantation of SSCs into the seminifer-
ous tubules of an infertile male can induce donor-derived 
spermatogenesis and produce spermatozoa that transmit the 
donor haplotype to progeny [4]. Studying SSC populations 
and their niches, as well as their genetic manipulation and 
transplantation in vitro, provides a valuable model for under-
standing adult stem cell biology, decoding cell-signaling 
pathways that control SSC functions (self-renewal or differ-
entiation), and modifying the germline to produce transgenic 
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animals [5, 6]. Despite their critical role, SSCs are difficult 
to study in vitro due to their low numbers in the testes and 
the challenges in identifying, culturing, and assaying their 
biological activity [1]. This review introduces the latest 
approaches in identifying and isolating SSCs in mammals.

Methods

A comprehensive literature search was conducted across var-
ious databases, including PubMed, ScienceDirect, Cochrane 
Library, ISI, and Google Scholar, using a combination of 
keywords such as germ cells, spermatogonial stem cell, 
propagation, spermatogenesis, and manipulation. The search 
was carried out until February 2024. The review adhered to 
specific inclusion and exclusion criteria, which filtered stud-
ies based on their relevance to human subjects or clinically 
relevant animal models, and their focus on SSC proliferation 
and differentiation. The initial search yielded 321 articles, 
from which 249 were screened by title and abstract. Subse-
quently, 89 articles were selected for full-text review, result-
ing in a final selection of 76 articles for detailed analysis.

Origin of Spermatogonial Stem Cells

Spermatogonia arise from gonocytes in the postnatal tes-
tis, which originate from primordial germ cells (PGCs) 
during fetal development. PGCs are transient cells that 

initially appear as a small cluster (20–25 cells) of alkaline 
phosphatase-positive cells in the fetal yolk sac at the epi-
blast stage, around 7-7.25 days post coitum (dpc) in mice 
and 3 weeks after conception in humans (Fig. 1A) [7]. Dur-
ing the formation of the allantois, these cells are passively 
swept out of the embryo to reach the indifferent gonads at 
8.5–12.5 dpc in mice and 4–5 weeks in humans (Fig. 1B and 
C). Upon colonization, PGCs are surrounded by protrusions 
of the genital tract, Sertoli progenitor cells, and peritubular 
myoid cells around the fallopian tubes, beginning the for-
mation of primitive sex cords (Fig. 1D) [8]. They migrate 
from the embryonic ectoderm to the genital ridges by amoe-
boid movement through the allantois and hindgut (Fig. 1D 
and E). These cells proliferate during the migratory phase, 
resulting in approximately 3,000 germ cells colonizing the 
genital ridge at about 13.5 dpc in mice and 5–6 weeks in 
humans [9]. At this stage, the gonads are bipotential in both 
sexes. Following colonization in the genital ridges, PGCs 
are surrounded by Sertoli precursor cells and peritubular 
myoid cells, initiating the formation of primitive sex cords 
(Fig. 1E and F) [8]. Sex differentiation occurs at 6–7 weeks 
in humans and 12.5–13.5 days in mice. The secretion of 
testis-determining factor (TDF), produced by the SRY gene 
(sex-determining region of the Y gene), converts the bipo-
tential gonad into a testis. The primitive sex cords evolve 
into seminiferous tubules in the male gonad (Fig. 1D-G), and 
the blood-testis barrier is formed by tight junctions between 
adjacent Sertoli cells. From this stage onward, germ cells are 

Fig. 1   Schematic representation of testis formation. Accumulation of 
primordial germ cells as a small cluster in the wall of yolk sac, near 
the junction of hindgut and allantois at week 4 in humane (A). Migra-
tion path of germ cells along the wall of hindgut and dorsal mesen-

tery into the genital ridge in 5 weeks (B, C). Colonization of cells in 
the genital ridge and formation of primitive sex cords in 6 weeks (D) 
to 8 weeks (E). Late development of testis at month 2–3 (F) and 4 
(G) in human testis
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referred to as gonocytes, which differ morphologically from 
PGCs [10]. Gonocyte is a general term that includes mitotic 
(M)-prospermatogonia, T1-prospermatogonia, and T2-pros-
permatogonia. M-prospermatogonia are located in the center 
of testicular cords, away from the basement membrane, and 
reproduce up to 16-16.5 dpc in mice. These cells subse-
quently differentiate into T1-prospermatogonia around 16.5 
dpc [11]. In late gestation, T1-prospermatogonia become 
arrested in the G0/G1 phase of the cell cycle and remain in 
this state until birth [10]. Low-level expression of meiosis-
associated genes such as Sycp3 and Dmc1 in arrested germ 
cells indicates their potential to enter meiosis upon increased 
expression of meiosis-related genes [12]. It is hypothesized 
that meiosis arrest is induced by meiosis-inhibitory agents 
from the testes. One of the most significant meiosis-inhibit-
ing factors is Cyp26b1, produced by Sertoli cell precursors 
on day 11.5 in mice, before sex differentiation. This fac-
tor is present throughout fetal development and regulates 
retinoic acid (RA) function in the gonads before birth [13]. 
Recent studies have shown that exposure to RA during 
embryonic development (12.5–16.5 dpc in mice) completes 
mitotic divisions and initiates meiosis in XX female gono-
cytes. However, in the male XY embryonic gonad, Sertoli 
cell precursors inactivate RA through Cyp26b1 expression, 
preventing the completion of mitotic divisions and initiation 
of meiosis during embryonic development [14]. In rodents, 
during the first week after birth, T1-prospermatogonia begin 
to proliferate, differentiate into T2-prospermatogonia, and 
migrate to the basement membrane of seminiferous tubules 
[10]. T2-prospermatogonia establish the initial pool of type 
A spermatogonia, which maintain spermatogenesis through-
out post-pubertal life [10, 15].In normal human testes, fetal 
spermatogonia, originating from gonocytes between 10 and 
22 weeks post-conception, differentiate into adult dark sper-
matogonia (Adark). These cells are known as diploid SSCs 
with adult stem cell characteristics. They self-renew through 
asymmetric cell divisions and produce more differentiated 
progenitor cells, known as adult pale spermatogonia (Apale). 
Although both Adark and Apale are often referred to as sper-
matogonial stem cells, their biological functions differ sig-
nificantly. Adark spermatogonia, as true SSCs, regenerate 
testicular tissue and germ cells, whereas Apale acts as pro-
genitors, differentiating into type B spermatogonia, which 
serve as a functional reserve [16].

The Spermatogenic Cycle

The development of the spermatogenic lineage, referred 
to as the seminiferous epithelium cycle, is a complex and 
asynchronous process that occurs regularly [10]. The time 
interval required for one complete series of cell associations 
to appear at a specific point within the seminiferous tubule 

is known as the duration of the seminiferous epithelium 
cycle. This duration is generally constant for a given spe-
cies, although variations can occur between different strains 
or breeds of the same species. The timing of the cycle is 
primarily controlled by the germ cell genotype and is not 
affected by exposure to gonadotropic hormones in different 
species [17]. The durations of the seminiferous epithelium 
cycles and the complete spermatogenesis process for various 
species, including pigs, sheep, goats, cows, boars, horses, 
humans, rabbits, dogs, monkeys, buffalo, and rodents, are 
presented in Table 1 [7, 9, 10, 17–22].

In humans, the entire development process from stem cell 
to spermatozoa takes approximately 64 days and is divided 
into four phases: 16 days for mitotic divisions (up to the 
primary spermatocyte stage), 24 days for the first meiosis 
(up to the secondary spermatocyte stage), a few hours for the 
second meiosis (up to the spermatid stage), and 24 days for 
spermiogenesis (resulting in mature spermatozoa) [18, 28].

Identification of SSCs

There are several methods to distinguish different types of 
spermatogonia from other testicular cells, including morpho-
logical characteristics, molecular markers, and functional 
assays. Morphologically, SSCs can be identified based 
on nuclear morphology, cell location in the seminiferous 
epithelium, the amount of heterochromatin in the nucleus, 
and its relationship to the nuclear membrane. In rodents, 
these criteria allow for the identification of three types of 
spermatogonia: types A, Intermediate, and B [6, 7, 26, 38]. 
In humans and rhesus monkeys, there are two subtypes of 
type A spermatogonia, Adark and Apale, followed by one 

Table 1   The length of spermatogenesis and the seminiferous epithe-
lium cycles in different species

Species Spermatogenic 
cycle length

Overall rate of 
spermatogenesis

References

Pig 8.6-9 40 [23]
Boar 8.3 36-40.6 [23]
Human 16 64 [6, 7, 18]
Cow 13.5 55–61 [21, 24]
Stallion 12.2 55–59 [25]
Goat 10.6 47.7–49 [21, 25–27]
Rat 12.9 45–48 [28–30]
Mouse 8.6–8.9 44 [2, 11, 31–34]
Rabbit 10.7 39 [35]
Monkey 9.5–9.8 42 [22, 77]
Buffalo 8.6–8.7 64–74 [18]
Ram 10.5–10.6 45–49 [36, 37]
Dog 13.6 51 [35]
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generation of type B spermatogonia in humans and four 
generations (B1, B2, B3, and B4) in monkeys (Fig. 2) [26, 
28, 39]. In rodents, seven subtypes of type A spermatogo-
nia have been reported: Asingle (As), Apair (Ap), Aaligned 
(Aal), A1, A2, A3, and A4. The spermatogenic lineage in 
rodents includes four divisions in the undifferentiated sper-
matogonia pool (As, Apr, Aal), followed by 6–7 divisions 
in the differentiated spermatogonia pool (Aal (16 cell-
chain) A1–A4, Intermediate, and B), leading to the forma-
tion of primary spermatocytes (Fig. 2) [36]. Thus, there are 
typically 14 divisions in rodents, 10 in monkeys, and 7 in 
humans between undifferentiated type A spermatogonia and 
sperm production (Fig. 2).

In ruminants, three subtypes of type A spermatogonia 
have been identified: basal, aggregated, and committed 
spermatogonia. Basal and some aggregated (small chains 
of cells) spermatogonia are described as undifferentiated 
type A SSCs, while long chains of aggregated SSCs and 
committed spermatogonia are considered differentiated 
type A SSCs. Basal stem cells, equivalent to As and Ap 
in rodents, appear as small round or oval cells with a thin 

rim of cytoplasm, a large central nucleolus, and one to 
three irregular nucleoli. Aggregated spermatogonia (Aal), 
varying in size, typically contain one or two nucleoli. 
Committed spermatogonia, the largest type, include dif-
ferent subpopulations of differentiating type A spermato-
gonia (A1-A4). Intermediate spermatogonia are usually 
large cells with ovoid nuclei and more heterochromatin 
near the nuclear envelope. Type B spermatogonia have 
round nuclei with significant amounts of heterochromatin 
concentrated at the nuclear periphery [5, 28, 38, 40]. In 
general, type A spermatogonia have little or no hetero-
chromatin, intermediate spermatogonia display a moder-
ate amount, and type B spermatogonia have an abundant 
amount of heterochromatin [28].

Although morphological evaluation is a useful tool for 
identifying SSCs, relying solely on this approach can lead 
to errors, especially when analyzing cell suspensions out-
side the seminiferous tubules. Therefore, it is essential to 
complement morphological characterization with functional 
methods or molecular techniques to accurately identify the 
types of testicular cells.

Fig. 2   The spermatogenic lineages in rodents (A), humans (B), and 
monkeys (C). Undifferentiated spermatogonia are described as As, 
Ap, or Aal in the rodents and Adark or Apale in monkeys and humans. 
During spermatogenic development, Asingle (As) and Adark and/or 
Apale undergo mitotic divisions to give rise to cells of larger chains 
of interconnected cells sizes through transit-amplifying mitotic divi-
sions. The spermatogenic lineages in rodents have 4 divisions in the 
pool of undifferentiated As, Ap, and Aal spermatogonia, followed by 
6–7 divisions in the pool of differentiated spermatogonia (Aal (16 
cell-chain, A1–A4, Intermediate, and B), that give rise to primary 

spermatocytes. Two additional meiotic divisions produce round sper-
matids that undergo spermiogenesis to produce sperm (A). The sper-
matogenic lineages in humans consist of 2 divisions in the pool of 
undifferentiated Adark/Apale spermatogonia, followed by a single divi-
sion in differentiated B spermatogonia that give rise to primary sper-
matocytes (B). The spermatogenic lineages in monkeys consist of 3 
divisions in the pool of undifferentiated Adark/Apale spermatogonia, fol-
lowed by 4 divisions of differentiated spermatogonia (B1–B4), which 
give rise to primary spermatocytes (C)
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Bimolecular Markers of Spermatogenic Cells

Identifying the molecular signatures of testicular cells, 
including spermatogonial stem cells (SSCs), is a complex 
process that requires accurate detection of premeiotic, mei-
otic, and postmeiotic molecular markers. These markers are 
highly specific, being expressed exclusively on certain cells 
at specific stages of differentiation. A summary of some spe-
cific molecular markers used to identify different types of 
spermatogenic cells, particularly undifferentiated and dif-
ferentiated type A SSCs, as well as testicular somatic cells, 
is provided in Table 2.

In Vitro Enrichment

To study the regenerative and biological properties of 
SSCs, an adequate population of pure spermatogonia and 
an in vitro system that supports this process in biologically 
enriched populations of cells are necessary. In ruminants, 
testicular cell suspensions isolated from seminiferous 
tubules contain a mixture of different somatic cells (Ser-
toli, Leydig, and peritubular myoid cells) and about 1.33% 
germ cells. Among these, only a small fraction consists of 

undifferentiated type A spermatogonia (0.02–0.03% of total 
germ cells) [37, 38]. Therefore, efficient purification meth-
ods that minimally impact SSC survival and proliferation 
are crucial for evaluating the clonogenic properties of these 
cells.

Several methods for enriching male germline stem cells 
exist, including elutriation [25], differential plating [29], 
velocity sedimentation [24], discontinuous Percoll density 
gradient [23, 40], Magnetic-Activated Cell Sorting (MACS) 
[31], and Fluorescence-Activated Cell Sorting (FACS) [23, 
50]. Among these methods, Percoll density gradient and 
differential plating are preferred due to their speed, ease, 
safety, cost-effectiveness, and minimal negative impact on 
SSC viability and morphology [29, 40]. The low viscosity 
and osmolality of Percoll, ideal for isolating different cell 
types, have led to its widespread use for separating adult 
and prepubertal SSCs in goats [40], bovines [27], chickens 
[51], and pigs [20].

In the differential plating method, somatic cells adhere 
to the culture plate during incubation due to their anchorage 
dependence, allowing for the rapid removal of most Sertoli 
and Leydig cells from the cell suspension [38, 40]. This 
method has been shown to yield significant and acceptable 
purity levels of undifferentiated type A spermatogonia in 
goats [40], mice [32], rats [41], and pigs [48].

Table 2   Specific molecular markers of different subtypes of spermatogenic cells

Types of spermatogenic cells Molecular markers References

Undifferentiated type A Spermatogonia (As, Ap, Aal) EGR3, Ngn3, RBM, Nanos3, CD9, Thy1 (CD90), CD24, GFR-a1, ID4, 
PLZF, CSFR, GCNA1, Lin28 (Tex17), Numb, Bcl6b, VASA (MvH), 
UTF1, CDH1, Nucleostemin, EE2 antigen, Ret, Lrp4, GPR125, TAF4B, 
Sox-3, DAZL, Sohlh2, Stra8, a6-integrin (CD49f), b1-integrin (CD29), 
Epcam, Pou5f1 (Oct4)

[11, 31]

Differentiated type A Spermatogonia (A1-A4) c-kit, GCNA1, RBM, VASA (MvH), EE2 antigen, DAZL, Nucleostemin, 
Numb, TAF4B, Stra8, a6-integrin (CD49f), Sohlh1, Lrp4, b1-integrin

(CD29), Epcam, CD9

[41]

Type In and type B Spermatogonia c-kit, GCNA1, VASA (MvH), EE2 antigen, DAZL, Stra8, a6-integrin
(CD49f), b1-integrin (CD29), Epcam, CD9, TAF4B, Numb, Lrp4, Sohlh1, 

Nucleostemin

[38, 42]

Spermatocyte c-kit, GCNA1, VASA (MvH), EE2 antigen, TAF4B, DAZL, Stra8, a6-inte-
grin (CD49f), Lrp4, Sohlh1, Numb, b1-integrin (CD29), Ngn3, Nucle-
ostemin, HSP60, MAGEA-4, UCHL1, ITGA6, ZBTB16, HLA class I

[43]

Round and Elongated Spermatid c-kit, GCNA1, TAF4B, Lrp4, VASA (MvH), Stra8, CRES, Protamin 2 
(PRM2), GRP78, Transition protein T1 and T2, HLA class I

[44, 45]

Spermatozoa Other Dense Fibers (ODF-2), SPANX, GRP78, CRES, DAZ2, Tissue Spe-
cific Protein 2 (TPX-1) LDHC

[46]

Immature Sertoli cells AMH (Anti-mulleraim Hormone), WT1 (Wilms tumor gene)-transcription 
factor, Aromatase (P450 enzyme), NCAM (Neural cell adhesion molecule), 
Cytokeratin 15, M2A

[7, 19]

Mature Sertoli cells Occludin, Wimentin, P27 (Cyclin-dependent kinase inhibitor), WT1, Dmrt1, 
Gata 4, Gata 1, AR (Androgen receptor), Transferrin, ITGA6 (Alpha 6 
integrin)

[47]

Leydig cells ITG alpha 6 (alpha 6 integrin), RLF, 3 beta-HSD, TGF alpha [48]
Peritubular myoid cells Alpha-smooth muscle actin [49]
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In Vitro Propagation

Propagating male germline stem cells in vitro offers a 
valuable approach to investigating the molecular mecha-
nisms underlying spermatogenesis and the cell-signaling 
pathways regulating SSC function (self-renewal and dif-
ferentiation). In 2009, Sadri-Ardekani et al. established a 
long-term culture (up to 28 weeks) of human spermato-
gonial stem cells from small testicular biopsies, achieving 
a 53-fold increase in SSC numbers within 19 days and an 
18,450-fold increase within 64 days [47].

Typically, testicular cultures begin with a mixed popu-
lation of cells, including spermatogonia and somatic cells. 
Within two or three days, somatic cells form a confluent 
monolayer serving as a feeder layer, to which 90% of SSCs 
attach. SSCs, as colony-forming cells, cluster together in 

some areas of the culture plate, forming various types of 
type A spermatogonia (single, paired, multi-cell chains, or 
small clusters) (Fig. 3). Over time, the number and size of 
spermatogonia colonies increase, displaying forms such 
as single, paired, aligned, and rosette configurations after 
one week of culture.

Using a chemically defined medium, researchers have 
explored the growth factor-regulated molecular mechanisms 
involved in SSC proliferation and self-renewal [33, 42, 52, 
53]. Key growth factors used for SSC propagation in vitro 
include glial cell line-derived neurotrophic factor (GDNF), 
GDNF receptor-α1 (GFR-α1), basic fibroblast growth fac-
tor (bFGF), epidermal growth factor (EGF), and leukemia 
inhibitory factor (LIF) [33, 34, 52–54]. GDNF, secreted by 
Sertoli cells under the influence of FSH and cytokines [53], 
is particularly crucial for SSC regeneration and prolifera-
tion, both in vivo [52, 55] and in vitro [49, 52, 53, 56, 57]. 

Fig. 3   The immunohistochemi-
cal (A) and immunocytochemi-
cal (B) identification of type A 
spermatogonia in prepubertal 
goat seminiferous tubules 
using an antibody against c-kit. 
Three groups of spermatogo-
nia with different sizes were 
determined. Basal spermato-
gonia (red arrows, A, B) were 
negative for c-kit. These cells 
were comparable to As and Ap 
spermatogonia. Aggregated 
spermatogonia resembled the 
Aal spermatogonia (red arrow-
head, A, B) were c-kit positive. 
Committed spermatogonia, 
comparable to A1–A4 differ-
entiating spermatogonia, were 
positive for c-kit (square, B, C). 
The testicular cells, including 
somatic and SSCs after 1 day 
(C), 2–3 days (D) and 1 week 
(E, F) culture. After a few days 
of culture, the spermatogonia 
were seen in different forms: 
single (black arrow, D, E), 
paired (black arrowhead, D, E), 
aligned (circle, E), and cluster 
(asterisk, F)
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Studies have shown that GDNF alone or in combination with 
other growth factors significantly increases SSC viability 
and colony formation [2, 56, 57]. Withdrawal of GDNF 
leads to decreased expression of key genes like bcl6b and 
Sox2 in SSCs, reducing SSC numbers and colony size [58]. 
In goats, higher GDNF concentrations have been found to 
induce logarithmic divisions of type A spermatogonia, form-
ing denser and larger clusters [33]. Similar effects have been 
observed in mouse, rabbit, and bovine SSCs [49, 52, 55].

In addition to GDNF, bFGF plays a vital role in maintain-
ing spermatogenesis and supporting SSC growth, particu-
larly during germ cell cluster formation. EGF also directly 
affects the growth of Sertoli cells and spermatogonia, as 
demonstrated in various species [33, 34, 53, 54, 59]. LIF, 
another Sertoli cell-derived factor, inhibits SSC differentia-
tion and supports SSC propagation [3, 43].

Classification of Culture Systems for Induction 
of Spermatogenesis in Vitro

In recent decades, techniques for the long-term maintenance 
of spermatogonial stem cells (SSCs) in vitro have signifi-
cantly improved by removing somatic cells from culture, 
which otherwise promote germ cell differentiation, enabling 
continuous subculture on feeder cells, and using chemically 
defined media containing various growth factors [52, 53]. 
Currently, two models—“in vivo” and “in vitro”—have been 
developed to preserve genetic material such as SSCs in vitro. 
“In vitro” models include organ culture, conventional (two-
dimensional), and three-dimensional (3D) culture systems, 
while spermatogonial stem cell transplantation (SSCT) and 
testicular xenograft techniques are considered “in vivo” 
models.

Organ/Tissue Culture System

Increasing knowledge about tissue culture systems has 
helped elucidate the molecular mechanisms underlying 
spermatogenesis and the development of diagnostic and 
therapeutic techniques. Organ culture systems manage tissue 
environmental conditions more easily than in vivo systems. 
In the 1960s, research into spermatogenesis in vitro began 
by culturing testicular organs from neonatal rodents [60, 61]. 
This technique was improved in the 1970s by Steinberger 
and colleagues, who were able to induce rat gonocytes to dif-
ferentiate into the pachytene stage of primary spermatocytes 
[44]. The main advantage of this approach is that germ cells 
maintain their spatial arrangement and microenvironmen-
tal composition in vitro, similar to in vivo conditions, with 
many endogenous factors being produced and released by 
the intact seminiferous epithelium and associated hormone-
producing cells.

Sato et al. (2011) reported the production of functional 
mouse sperm in  vitro by modifying the tissue culture 
medium. They demonstrated that cryopreserved fragments 
of neonatal testicular tissue could undergo spermatogenesis 
using the standard gas-liquid interface culture method. In 
this procedure, small fragments of neonatal mouse testis 
containing primitive spermatogonia were placed on an aga-
rose gel half-soaked and incubated in a modified medium 
supplemented with knockout serum or lipid-rich bovine 
serum albumin. They observed mature spermatozoa approxi-
mately 27–45 days after culture initiation. After collecting 
round spermatids and mature spermatozoa from the cultured 
fragments and injecting them into mature oocytes via intra-
cytoplasmic sperm injection, live offspring were born [45].

In humans, Pendergraft et al. (2017) developed a three-
dimensional (3D) in vitro testicular organoid culture system 
as a novel tool for testicular toxicity screening and as a labo-
ratory model for human spermatogenesis. They produced 
multicellular human testicular organoids consisting of sper-
matogonia, Sertoli, Leydig cells, and cells around the Wolf-
fian ducts. These organoids were evaluated for morphology, 
viability, androgen production, and their ability to support 
germ cell differentiation. The upregulation of postmeiotic 
genes, including PRM1 and Acrosin, indicated a transi-
tion of a small percentage of diploid to haploid germ cells. 
These 3D organoids showed a dose-dependent response 
and maintained IC50 values significantly higher than 2D 
cultures, highlighting their potential as a reproductive tox-
icity screening tool [62].While organ culture models have 
great potential for elucidating the regulatory mechanisms 
of spermatogenesis and simulating natural environments, 
their clinical applications are limited. Tissue preservation 
in organ culture systems is challenging for long periods due 
to disrupted oxygen and nutrient supply, which often results 
in arrested or inefficient spermatogenesis, typically halting 
at the pachytene stage of the first meiotic division [30, 44, 
45, 61–63].

Conventional/Two‑Dimensional (2D) Culture System

Considering the culture conditions and microenvironment 
necessary for germ and testicular cell development is cru-
cial for enhancing the process of spermatogenesis in vitro. 
Therefore, producing an experimental model that simulates 
seminiferous tubules for sperm production in vitro is chal-
lenging. Signals produced in a 2D culture of testicular cells 
differ significantly from those in vivo, where conditions 
necessary for SSC survival, propagation, differentiation, 
and recapitulation are optimally provided [53]. These dif-
ferences in cell signaling pathways in conventional culture 
systems are due to the disturbance of spatial arrangement 
of testicular cells and disintegration of seminiferous niches.
Nevertheless, conventional culture systems have become 
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a common approach to study the influence of milieu and 
identify the biomolecular factors involved in the regulation 
of SSC proliferation and differentiation [18, 64]. Since the 
early 1990s, this method has been used extensively for SSC 
propagation in vitro, involving coated or uncoated plastic 
culture vessels where germ cells and/or somatic cells are 
cultured alone or with feeder layers [65, 66]. This method, 
using different types of supportive cells with specific physi-
ological and evolutionary characteristics, has enabled the 
establishment of SSC lines and provided a tool to achieve 
male germ cells at different stages of spermatogenesis [46, 
49, 56]. However, completion of spermatogenesis in vitro 
and access to SSC lines by this method is contingent upon 
overcoming several obstacles, such as accurately identifying 
in vitro propagation of low numbers of spermatogonia and 
regulating the SSC differentiation process [46].

In 2D culture systems, co-culture techniques using vari-
ous types of cells cannot be standardized. However, co-
culture with Vero cells, an immortalized cell line derived 
from kidney epithelial cells of the green monkey, has been 
beneficial for the maturation of spermatocytes and sperma-
tids. These cells act as a feeder layer by contributing trophic 
growth factors and, due to their embryological similarity to 
genital epithelial cells, remove toxic compounds from the 
culture medium [46]. Tanaka et al. (2003) showed that a sin-
gle human primary spermatocyte could undergo meiosis and 
differentiate into round spermatids when co-cultured with 
Vero cells [67]. However, despite the attractiveness of co-
culturing with Vero cells, concerns remain about their use 
in clinical applications due to the theoretical risk of trans-
mitting infectious agents and inducing tumorigenesis [30].

Three‑Dimensional (3D) in Vitro Culture Systems

Developing efficient methods for culturing and propagating 
SSCs in vitro is crucial for achieving high concentrations of 
germ cells for medical and agricultural applications. There-
fore, understanding the spatial arrangement of testicular 
cells is essential for completing germ cell maturation and 
regulating signaling pathways that control SSC self-renewal 
and differentiation. Three-dimensional culture systems were 
initially established for clonogenic assays to detect the com-
plex mechanisms involved in SSC proliferation, providing 
unequivocal evidence that germ cells can routinely develop 
outside the body to the stage of elongated spermatids 
[68–71]. These systems define the optimal temporal and 
spatial conditions required for maintaining SSC self-renewal 
capacity [72].Using this culture system enhances our under-
standing of interactions between hormone-producing cells 
and germ cells, as well as between germ cells and the extra-
cellular matrix, and their effects on spermatogenesis [68, 71, 
72]. This culture system prevents ischemia, which hinders 
the long-term culture of testicular tissue and maintains the 

normal organization of germ cells in densely packed clus-
ters [70]. Generally, 3D culture systems are organized to 
simulate the microenvironment of seminiferous epithelium 
in vitro. Several studies have provided unequivocal evidence 
that male germ cells in three-dimensional culture systems 
have grown to the stage of elongated spermatids [68–70]. 
Stockenburg et al. (2008) showed that embedding somatic 
cells in the solid bottom phase of a soft agar culture system 
(SACS) increased colony formation of mouse germ cells 
and improved spermatogenic differentiation of mouse SSCs 
in the upper phase of the gel layer. They showed complete 
maturation of germ cells into normal sperm by co-culturing 
premeiotic germ cells with somatic testicular cells, including 
Leydig, Sertoli, and peritubular myoid cells, in the presence 
of gonadotropin. The results confirmed that an appropri-
ate ratio of somatic cells to germ cells, along with suitable 
environmental conditions, culture temperature, and gonad-
otropin/hormone concentrations, are essential for efficient 
proliferation and differentiation of juvenile and adult mouse 
germ cells in vitro [71].

In 2009, the same researchers compared SACS and the 
methylcellulose culture system (MCS), confirming that the 
three-dimensional simulation of mouse SSC niches in vitro 
could be achieved by spatial arrangement of the seminiferous 
epithelium in three compartments: basal, intraepithelial, and 
adluminal. They described that MCS and SACS, as alter-
native matrices for germ cell culture, provided suitable 3D 
structures for colony formation and differentiation of pre-
meiotic germ cells into postmeiotic stages and subsequently 
normal mouse spermatozoa [70]. However, Sato et al. (2011) 
noted that SACS and MCS form a thick layer due to matrix 
properties, making it difficult to identify mouse spermatozoa 
directly during culture [45]. Eslahi et al. (2013) investigated 
the effect of a poly-L-lactic acid (PLLA) nanofiber scaf-
fold on frozen-thawed neonate mouse SSCs, indicating the 
scaffold’s efficacy in promoting germ cell proliferation and 
tissue engineering [35].

Spermatogonial Stem Cell Transplantation (SSCT)

Studies of spermatogenesis were hampered by a lack of 
efficient in vitro and in vivo assay systems until a method 
was established for transplanting germ cells from one ani-
mal to another. SSCT, a procedure in which testicular cells 
are harvested from a fertile male and microinjected into the 
seminiferous tubules of an infertile.

Conclusions

The successes in both in vivo and in vitro germ cell matura-
tion offer hope that, in the future, we will be able to induce 
spermatogenesis under in  vitro conditions, potentially 
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eradicating male infertility, even in patients with non-
obstructive azoospermia. Recent advancements in SSC 
cryopreservation, transplantation, and three-dimensional 
culture systems pave the way for developing new cell-based 
therapies, advancing germline gene therapy, and treating 
many currently incurable diseases. However, extensive basic, 
translational, and clinical research is still necessary before 
these techniques can be safely and effectively applied in 
human clinical settings.
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