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Abstract 

Background: Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproduc-
tive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples’ 
features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or 
continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertili-
zation (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best 
of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to 
propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome 
and ranking the most significant features.

Methods: For this purpose, a novel approach combining complex network-based feature engineering and stacked 
ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients’ data similarities. The 
feature engineering step is performed on the complex networks. The original feature set and/or the features engi-
neered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment 
cycle. Our study is a retrospective study of a 5-year couples’ data undergoing IUI. Data is collected from Reproductive 
Biomedicine Research Center, Royan Institute describing 11,255 IUI treatment cycles for 8,360 couples. Our dataset 
includes the couples’ demographic characteristics, historical data about the patients’ diseases, the clinical diagnosis, 
the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical preg-
nancy outcome.
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Background
Infertility is defined as the failure of the female partner 
to conceive after at least one year of regular unprotected 
sexual intercourse [1]. More than 186 million people of 
the world’s population specifically people living in devel-
oping countries are suffering from infertility [2]. In most 
cases, the causes of infertility are not clear, which compli-
cates the treatment procedure. These problems have been 
exacerbated for several reasons, such as lifestyle changes, 
infection, and genetic issues. In many cases, the only 
way to get pregnant has been through the use of assisted 
reproductive technology (ART), and its performance has 
not yet been optimized [3].

Every year, more than 1.5 million ART cycles are car-
ried out all over the world [4]. ART consists of three basic 
procedures including intrauterine insemination (IUI), 
in-vitro fertilization (IVF) and intracytoplasmic injec-
tion (ICSI) which are generally carried out in different 
steps of the treatment [5]. The first-line treatment, sec-
ond and the third stages of ART are IUI, IVF, and ICSI, 
respectively [6]. In comparison with other sophisticated 
methods of ART, IUI has been considered as the easiest, 
minimally invasive and less expensive one. Most of the 
recent researches have shown the efficacy of IUI [6, 7].

IUI outcome prediction is a challenging issue which the 
ART practitioners are dealing with. Predicting the suc-
cess or failure of IUI based on the couples’ features can 
assist the physicians to make the appropriate decision for 
suggesting IUI to the couples or not and/or continuing 
the treatment or not for them [5].

Machine Learning approaches, as the modern scien-
tific discipline, concentrates on how to detect the hidden 
patterns and extract the information from data. Machine 
learning provides different methods and algorithms to 
predict the output from some input predictors which can 
be used for clinical decision making [8].

To the best of our knowledge, many previous studies 
have been focused on predicting the IVF and ICSI out-
come using machine learning methods as summarized in 
Table 1.

As illustrated by Table  2, the previous studies related 
to outcome prediction of ART methods are listed which 
have analyzed data using data mining and/or statistical 

methods. For this purpose, classifiers such as Decision 
Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), 
K-Nearest Neighbors (K-NN), Support Vector Machines 
(SVM), Random Forest (RF), and Artificial Neural Net-
works (ANN) such as Multi-Layered Perceptron (MLP) 
and Radial Basis Function (RBF) have been used in the 
previous studies for predicting the clinical pregnancy after 
the complete cycles of different ART methods. A main 
drawback of the most of the considered previous studies 
is small volume of dataset and a few number of the consid-
ered features. Small dataset increases the risk of overfitting 
the trained models. Overfitting occurs when a model has 
good predictive ability for training dataset but shows poor 
performance for test dataset. Models with high overfitting 
property has lower generalization ability.

In this study, a dataset including the features of 11,255 
IUI treatment cycles for 8360 couples is considered for 
IUI outcome prediction. Our dataset includes the cou-
ples’ demographic characteristics, historical data about 
the patients’ diseases, the clinical diagnosis, the treat-
ment plans and the prescribed drugs during the cycles, 
semen quality, laboratory tests and the clinical preg-
nancy outcome. Considering the large number of couples 
and their corresponding IUI treatment cycles is a main 
advantage of this study compared to the considered pre-
vious studies.

On the other hand, most of the previous studies have 
considered the outcome prediction for IVF or ISCI. 
To the best of our knowledge, a few studies have been 
focused on predicting the outcome of IUI which have 
used clustering methods [9, 10] or regression analysis 
[11].

The previous studies which have been based on regres-
sion analysis only have considered the weights of the 
independent features to predict the overall pregnancy 
probability and they have not assessed the interconnec-
tion among the features [11–17]. Many previous studies 
have suffered from the lack of statistical power due to 
their small dataset [17, 18]. Also, the AUC performance 
of the previously proposed models for predicting IUI 
outcome have been low [12]. Therefore, it is required to 
improve the prediction performance by proposing novel 
methods and considering more data records.

Results: Experimental results show that the proposed method outperforms the compared methods with Area under 
receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and 
accuracy of 0.85 ± 0.01 for the prediction of IUI outcome.

Conclusions: The most important predictors for predicting IUI outcome are semen parameters (sperm motility and 
concentration) as well as female body mass index (BMI).

Keywords: IUI outcome prediction, Complex networks, Feature engineering, Stacked ensemble classifier, Feature 
selection
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Most of the considered previous studies have used sin-
gle classifiers and/or RF as a simple ensemble classifier. 
Some previous studies have illustrated that the stacked 
models can improve the classification performance for 
other applications and other datasets [19–21]. Therefore, 
in this study, a novel stacked ensemble is designed and 
proposed for improving the performance of IUI outcome 
prediction.

The main aim of this study is to develop an automatic 
classification and feature scoring method to predict 
intrauterine insemination (IUI) outcome and ranking 
of the most significant features, based on the features 
describing the couples and their corresponding IUI treat-
ment cycles. For this purpose, a novel approach com-
bining complex network-based feature engineering and 
stacked ensemble (CNFE-SE) is proposed. Three com-
plex networks are extracted considering the patients’ data 
similarities. The feature engineering step is performed 

on the complex networks. The original feature set and/or 
the features engineered are fed to the proposed stacked 
ensemble to classify and predict IUI outcome for cou-
ples per IUI treatment cycle. Our study is a retrospec-
tive study of a 5-year couples’ data undergoing IUI. Data 
is collected from Reproductive Biomedicine Research 
Center, Royan Institute describing 11,255 IUI treatment 
cycles for 8,360 couples.

The main novelty of this study lies in three folds 
including:

• Proposing a method for feature scoring and clas-
sification based on weighted complex networks and 
stacking ensemble classifiers

• Proposing feature engineering method based on 
complex networks

• Designing a novel stacked ensemble classifier for pre-
dicting IUI outcome

Table 1 Summarizing the previous studies of predicting ART outcome

Research problem Dataset Features Analytical method Remarks

Predicting IVF outcomes 5275 records 67 different features Combination of Decision Tree 
and Genetic algorithm

Low predictive accuracy with 
73%

Patient-specific predictions of 
outcome after IUI

1438 patients who underwent 
3375 IUI cycles

8 features Logistic regression analysis A few numbers of features

Predictive modeling of 
implantation outcome in 
IVF

3898 embryos 18 features Naive Bayes, Decision Tree, 
K Nearest Neighbors, SVM, 
multilayer perceptron, radial 
basis function network

A small number of features

Determine the impact of 
sperm morphology on the 
success of IUI

412 couples with 530 IUI 
cycles

12 features statistical analysis A few samples studied

Outcome prediction of IUI 
based on sperm morphol-
ogy and progressively 
motile sperm count

4251 first IUI cycles of 1166 
couples

9 features multivariable logistic regres-
sion

A few features considered

Predicting live birth after IVF 
complete cycle

113,873 women data Age and duration of infertility Logistic regression A few difference makers 
considered

Identifying and choosing the 
best sperms for ICSI

219 patients 13 features Naive Bayes, SVM, MLP, IBK, 
K-Star, Random Committee, 
J48, Random Forest

Small set of patients

IVF outcome prediction 
relying on endometrial 
transcriptions

25 patients 20 feature PCA and HCA clustering Small number of patients

Predicting Implantation Out-
come of IVF and ICSI

the data of 486 patients 21 features SVM, Adaboost, RPART, RF, 
1-NN

A few features considered

Predicting the impact of 
homologous semen on the 
success rate of IUI

556 couples with 1401 IUI 
cycles

16 features Logistic regression Small dataset

Assessing the effects of FSH 
and clomiphene citrate 
on infertile women with 
unexplained infertility

2259 IUI cycles of 684 couples 6 features Logistic regression A few determinative factors 
studied

Outcome prediction of ART 257 infertile couples 12 features ANN Small dataset

Prediction of implantation 
after blastocyst transfer in 
IVF or ICSI

1052 patients in 32 features Random Forest, Multivariate 
logistic regression model

A small number of features
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Methods
The main steps of the proposed approach combining 
complex network-based feature engineering and stacked 
ensemble (CNFE-SE) to predict the success of Intrauter-
ine Insemination and ranking the features are illustrated 
in Fig. 1.

The main steps of the proposed method (CNFE-SE) as 
depicted in Fig. 1 include the modules for data collection 
and preparation, feature scoring and classification and 
finally model evaluation and validation. The first module 
consists of data collection, sampling from data, preproc-
essing the collected data and filtering irrelevant features. 
In the next module, ignoring a feature, constructing three 
complex networks from the patients, extracting features 
from the constructed complex networks, training the 
classifiers based on the extracted features and finally 
scoring the ignored feature are performed. The last mod-
ule evaluates and validates the models trained in the pre-
vious module. More details about the mentioned tasks 
are described in the following subsections.

Data collection
Our research is approved by the Institutional Review Board 
of the Royan Institute Research Center and the Royan Eth-
ics Committee consistent with Helsinki Declaration with 
the approval ID of IR.ACECR.ROYAN.REC.1398.213. 
Anonymity and confidentiality of data were respected.

Dataset studied in this article is collected from Royan 
Institute, a public none-profitable organization, affili-
ated to the academic center for education, culture 
and research (ACECR) in Iran. It includes the features 
describing the patients having been treated by IUI 
method in the Infertility clinic at Royan Institute between 
January 2011 and September 2015.

In this retrospective study, a completed episode 
is defined as a sequence  of  treatment  cycles  result-
ing in positive clinical pregnancy  or  when  the treat-
ment with IUI is stopped. The inclusion criteria for the 
couples to be treated under IUI cycles were male fac-
tor, ovulatory disorders such as PCOS, hypothalamic 
amenorrhea, diminished ovarian reserve, combined 
causes, and unexplained subfertility. The couples’ dura-
tion of infertility was at least 1 year. Male infertility was 
defined as the semen quality parameters lower than 
the standards determined by WHO including sperm 
concentration lower than 15 million/ejaculate, semen 
volume lower than 1.5  mL, and total motility lower 
than 40% [22]. The male partners with donor sperms, 
Varicocele, and semen samples with total motile sperm 
count lower than 1 × 106 were excluded from being 
candidates for IUI treatment. Additionally, patients 
with anatomical and metabolic abnormalities, severe 
endometriosis and/or systemic diseases were excluded 
from our study.

Table 2 List of the features engineered from the complex networks in this study

j = 1, 2, 3 where j = 1 indicates the index of the complex network (CN) made up of all training instances. J = 2 (or 3) are indices 
of complex networks consisting of all training instances excluding data records belonging to negative (or positive) class

F1 = (node degree in  CN2 – node degree in  CN3) / node degree in  CN1 (4)

F2 = (node weighted degree in  CN2 – node weighted degree in  CN3) / node weighted degree in  CN1 (5)

F3 = (node closeness centrality in  CN2 – node closeness centrality in  CN3) / node closeness centrality in  CN1 (6)

F4 = (node Eigen value centrality in  CN2 – node Eigen value centrality in  CN3) / node Eigen value centrality in  CN1 (7)

F5 = (node betweenness centrality in  CN2 – node betweenness centrality in  CN3) / node betweenness centrality in  CN1 (8)

F6 = (node clustering coefficient in  CN2 – node clustering coefficient in  CN3)/ node clustering coefficient in  CN1 (9)

F7 = minimum length of the shortest path from the node in  CN2 / minimum length of the shortest path from the node in  CN3 (10)

F8 = the number of 2-hop neighbors of the node in  CN2 / the number of 2-hop neighbors of the node in  CN3 (11)

F9 = node degree in  CN2 / node degree in  CN3 (12)

F10 = node closeness centrality in  CN2 / node closeness centrality in  CN3 (13)

F11 = node Eigen value centrality in  CN2 / node Eigen value centrality in  CN3 (14)

F12 = node betweenness centrality in  CN2 / node betweenness centrality in  CN3 (15)

F13 = (normalized node degree in  CN2—normalized node degree in  CN3)/ max (normalized node degree in  CN2, normalized node degree in  CN3) (16)

F14 = (normalized node closeness in  CN2 – normalized node closeness in  CN3)/ max (normalized node closeness in  CN2, normalized node close-
ness in  CN3)

(17)

F15 = (normalized node Eigen value in  CN2 – normalized node Eigen value in  CN3)/ max (normalized node Eigen value in  CN2, normalized node 
Eigen value in  CN3)

(18)

F16 = (normalized node betweenness in  CN2 – normalized node betweenness in  CN3)/ max (normalized node betweenness in  CN2, normalized 
node betweenness in  CN3)

(19)

F17 = (normalized node clustering coefficient in  CN2 – normalized node clustering coefficient in  CN3)/ max (normalized node clustering coef-
ficient in  CN2, normalized node clustering coefficient in  CN3)

(20)
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11,255 IUI cycles related to 8,360 couples are consid-
ered in which the women age ranges from 16 to 47 with 
the average age of 29. This dataset contains 1,622 posi-
tive outcomes and 9,633 negative ones. Therefore, the 
overall pregnancy rate is 14.41% per completed cycle and 
19.4% per couple. Each couple is treated for 1.31 ± 0.59 
(mean ± Standard Deviation) IUI cycles which ranges 
from 1 to 7 cycle.

The features describe the couples’ demographic char-
acteristics, historical data about their diseases, the clinical 
diagnosis, the treatment plans and the prescribed drugs 
to the couples, male semen quality, laboratory tests and 
the clinical pregnancy outcome. The considered demo-
graphic features include age, body mass index (BMI), 
education level, consanguinity with spouse and some 
other features. The information about the history of the 
patients’ subfertility consists of the duration and type of 
infertility, length of marriage and so on.

The types of feature values are numerical, binary, nom-
inal and binominal types for 86, 152, 51 and 7 features, 
respectively. More details about the features is shown in 
Appendix 1.

In the collected dataset, the majority of couples (almost 
72%) have been treated for one cycle, 22% of couples have 
underwent two cycles, 5% of couples have been treated 
for three cycles, and less than 1% have been treated more 

than three cycles. The maximum number of cycles for 
treating a couple is seven. Figure 2 depicts the distribu-
tions of positive and negative clinical pregnancy rates for 
patients per treatment cycle.

As illustrated by Fig. 2, 63% of the couples belonging to 
the positive class (positive clinical pregnancy after com-
pleting the cycle) have been pregnant after the first treat-
ment cycle. 26% of data records in the positive class have 
received positive outcome after the second cycle. More-
over, 74% of the couples in the negative class have been 
considered after the first cycle.

Fig. 1 The main steps of the proposed method (CNFE-SE) for feature scoring and classifying the patients to predict IUI outcome

Fig. 2 The ratio of positive and negative clinical pregnancy per 
treatment cycle
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Data sampling
Data should be randomly partitioned into training and 
test datasets with no overlapping among these two sub-
sets. The models are trained on the training dataset and 
finally are evaluated by applying them to the test datasets.

K-fold cross validation (C.V.) is a common and popular 
sampling strategy used for this purpose. In this method, 
data is randomly divided into K disjoint equal-size sub-
sets. Every time, one of these K subsets is considered as 
the test dataset and all (K-1) remaining subsets make the 
training one. The model is trained K times on K training 
datasets and applied to the corresponding test datasets to 
evaluate the performances of the trained models.

Before sampling from data, the features having missing 
value rate higher than 20% are removed from the study. 
Moreover, the patient records with high missing value 
rate (higher than 20%) are excluded from the study and 
then, fivefold C.V. is used for sampling from the collected 
dataset, in this study.

At first, dataset is partitioned into non-overlapping 
subsets  D1,  D2, …,  DK based on K-fold Cross Validation 
strategy. Then, the models are trained on K training data-
sets composed of all  D1, …,  DK subsets excluding  Di for 
1 ≤ i ≤ K. Therefore, the ith training dataset consists of all 
 D1, …,  DK but  Di and the ith test dataset is  Di. The ith 
training dataset is balanced using over-sampling strategy.

Moreover, a strategy for classification structural risk 
assessment is used named as A-Test which will be 
described in the evaluation and validation subsection 
with more details. The number of instances of positive 
and negative outcomes in each folder of fivefold is 324–
325 and 1926–1927, respectively. therefore, the imbal-
ance ratio of the training set in each of 5-folds is about 
0.168.

Data preprocessing
Preprocessing of data is one of the most essential steps 
in the knowledge discovery tasks. A previous study have 
stated that 80% of total time in data mining projects is 
allocated for data preparation and preprocessing step 
[23].

In the first step, the initial collected dataset includes 
almost 86,000 data records describing the partners and 
about 1,000 features. The data records describing one 
couple per IUI treatment cycle are aggregated to make 
our dataset. Thus, the aggregated dataset includes 11,255 
data records and 296 features describing a couple during 
an IUI treatment cycle.

The nominal features are converted to dummy binary 
variables. If a nominal features has m different levels 
or values, it will be converted to (m-1) dummy binary 
variables. Therefore, instead of considering a nomi-
nal feature in the classification and feature ranking, its 

corresponding dummy binary variables are considered in 
the mentioned tasks.

The missing values for numeric and categorical fea-
tures are imputed based on the average and the most 
frequent values, respectively [24]. All numerical and ordi-
nal features are normalized using min–max normaliza-
tion method and the nominal features are converted into 
dummy binary variables.

Outlier detection is performed in this study based on iso-
lation forest method which has been proposed by Liu et al. 
[25] as an appropriate outlier detection method for high 
dimensional data. The hyperparameters of Isolation Forest 
including the number of estimators, maximum number of 
the samples, contamination coefficient, maximum number 
of the features, bootstrapping or not, and the number of 
jobs are tuned using grid search method. For evaluating 
the performance of Isolation Forest, its results are com-
pared to other outlier detection methods such as One-class 
SVM with kernel of Radial Basis Function (RBF), boxplot 
analysis and expert’s opinions. Three outliers are identified 
by this method and excluded from the study.

Filtering irrelevant features
Since the aggregated dataset consists of many features, 
the irrelevant features can be removed to reduce the 
computational time required for processing and analyz-
ing data. Thus, the features having very low correlation 
with the output feature or very high correlation with 
other input features are excluded from this study. The 
linear correlation coefficient between pairs of the features 
 Fp and  Fq are calculated as Eq. (1):

where  Fx,p  (Fx,q) indicates the xth row of the feature  Fp 
 (Fq) and  mp  (mq) denotes the average of the feature  Fp 
 (Fq), respectively.

If two features  Fp and  Fq have low (high) correlation, Corr 
 (Fp,  Fq) tends to zero (− 1 or + 1).

Ignoring a feature
Breiman has proposed measuring the feature importance 
by mean decrease in accuracy (MDA) of random forest 
[26]. This study aims at ranking the features according to 
their predictive power for classifying the instances to posi-
tive or negative clinical pregnancy. For this purpose, all the 
steps 6–9 are performed by considering all the features 
excluding one feature each time and MDA for the trained 
proposed classifier is calculated on the validation dataset. 
MDA values show the amount of reducing the model accu-
racy after removing a feature. Therefore, the higher values 

(1)

Corr
(

FpFq
)

=

∑

i

(

Fip −mp

)(

Fiq −mq

)

√

∑

j

(

Fjp −mp

)2
√

∑

j

(

Fjq −mq

)2
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of MDA indicate the higher predictive ability of the corre-
sponding features.

Constructing complex networks of patients
For modeling nonlinear data, complex networks are effec-
tive method [27]. Complex network is a weighted undi-
rected graph G = (V, E, W), where V is the set of nodes, E 
denotes the set of edges e  (vi,  vj) between the pairs of the 
nodes  vi and  vj and W is the weights w  (vi,  vj) assigned to 
their corresponding edges e  (vi,  vj) of E.

Three complex networks are constructed from the train-
ing datasets and one data record which should be classified 
independent from it belongs to training or test dataset. The 
first one is comprised of all the training data records and 
one data record which should be classified as its nodes and 
is called CN1. The second and the third complex networks 
consist of one data record which should be classified and 

Feature engineering based on the complex networks
In this section, three complex networks per data record 
are constructed including the considered data record, 
all training instances as CN1 and all training instances 
excluding negative (positive) instances as CN2 (CN3). A 
simple intuitive hypothesis is that a node has more sim-
ilarity with the training instances of its own class com-
pared to the instances of the other class. Therefore, the 
node centrality in different complex networks CN1, CN2 
and CN3 can be compared to classify the node. Features 
listed in Tables 3, 4 are defined based on this hypothesis.

Node degree is the number of its adjacent edges. 
Betweenness centrality for graph nodes have been intro-
duced by Bavelas [28] and is calculated as Eq.  (4). If a 
node lies in many shortest paths between pairs of nodes, 
its Betweenness centrality will be high. Nodes with high 
Betweenness centrality are the bridges for information 
flow.

Node closeness centrality measures the reciprocal of 
the sum of the length of the shortest paths between the 
node and all other nodes in the graph.

(4)Betweenness(vi) =
∑

j<k

number of the shortest paths between vj and vk passing vi

number of the shortest paths between vj and vk

all training data records excluding the negative and posi-
tive classes and named as CN2 and CN3, respectively. If the 
considered data record belongs to training dataset, its class 
label is excluded from its corresponding complex networks.

In other words, the nodes of CN1, CN2 and CN3 are one 
data record which should be classified and all the training 
data records, positive labeled and negative labeled training 
data records, respectively. Therefore, for each data record, 
three complex networks are constructed.

An edge between node  vi and  vj is drawn if the distance 
between the input features of the ith and jth training 
data records is smaller than a user-defined threshold. For 
calculating the pairwise distance between data records, 
Euclidean distance function is used and can be calculated 
as Eq. (2):

where m is the number of the input features,  Fi,p and  Fj,p 
denote the pth input feature values for data records cor-
responding to  vi and  vj.

The weight of the edge e(vi,vj) is calculated as Eq. (3):

(2)Distance
(

vivj
)

=

√

√

√

√

m
∑

p=1

(

Fip − Fjp
)2

(3)w
(

vivj
)

=
distance

(

vivj
)

max(distance(vkvh); vkvh ∈ V )

Table 3 MDA values of top-20 features

Feature Mean decrease 
in accuracy 
(MDA)

Post wash total motile sperm count 5.8

Female BMI 5.2

Sperm motility (grade a + b) 5

Total sperm motility 4.9

Sperm motility (grade c) 4.7

Total sperm count 4.5

After processing sperm concentration 4.3

Before processing sperm concentration 3.9

Sperm motility (grade d) 3.7

Male age 3.6

Semen volume 3.4

Duration of infertility 3.3

Total dose of gonadotropin 2.9

Female age 2.7

Duration of marriage 2.5

Sperm morphology (Amorph) 2.5

After processing progression 2.4

Before processing motility 2.3

Sperm normal morphology 2.2

Endometrial thickness 2.1
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Node Eigen vector centrality is higher when the node is 
pointed to by many important nodes.

Clustering coefficient of a node is calculated as Eq. (5):

Since, the number of the instances are very high, the 
complex networks are partitioned into smaller communi-
ties to reduce the computational complexity for calculat-
ing the engineered features.

One complex network extracted from only 100 data 
records treated by IUI method as a sample is shown in Fig. 3.

Figure  4 depicts two complex networks of the same 
samples of positive instances drawn by different 
thresholds.

As shown by Fig. 4, reducing the threshold for keeping 
the edges in the complex network even with a small value 
lead to the network with more sparsity and more small-
sized communities.

Figure  5 illustrates three complex networks from the 
samples of both classes, negative and/or positive classes.

As shown by Fig. 5, for the same thresholds, complex 
network considering the instances of both classes has the 
most density and the complex network from only positive 
instances has the most sparsity and consists of several 
small communities.

(5)

Clustering Coefficient(vi)

=

number of triangles connected to vi

number of triples centered around vi

Training the stacked ensemble classifier
Stacked ensemble classifier which is a scalable meta-mod-
eling methodology has been first introduced by Wolp-
ert in 1994 [29]. It has been inspired by neural networks 
whose classifiers have been considered as the nodes. 
Instead of a linear model, the stacked classifier can use 
any base classifier. The stacking operation has been per-
formed by either a normal stacking or a re-stacking mode. 

Table 4 Comparing the performance of CNFE-SE with other state of the art classifiers

Feature set Classifier Accuracy Sensitivity Specificity AUC F Score

All 296 features RF 0.58 ± 0.01 0.69 ± 0.05 0.46 ± 0.06 0.58 ± 0.01 0.55 ± 0.05

DT 0.55 ± 0.01 0.62 ± 0.04 0.49 ± 0.04 0.55 ± 0.01 0.55 ± 0.04

NB 0.53 ± 0.01 0.79 ± 0.11 0.26 ± 0.12 0.54 ± 0.01 0.39 ± 0.11

ANN 0.50 ± 0.01 0.54 ± 0.16 0.45 ± 0.16 0.50 ± 0.01 0.49 ± 0.16

SVM 0.54 ± 0.01 0.28 ± 0.1 0.8 ± 0.09 0.56 ± 0.01 0.41 ± 0.05

XGboost 0.55 ± 0.01 0.53 ± 0.03 0.56 ± 0.03 0.55 ± 0.01 0.54 ± 0.03

LGBM 0.60 ± 0.01 0.59 ± 0.03 0.59 ± 0.01 0.64 ± 0.01 0.59 ± 0.02

Adaboost 0.59 ± 0.01 0.69 ± 0.02 0.48 ± 0.02 0.60 ± 0.01 0.56 ± 0.02

CNFE-SE without FE 0.71 ± 0.01 0.69 ± 0.01 0.73 ± 0.01 0.71 ± 0.01 0.71 ± 0.01

CNFE-SE with FE 0.85 ± 0.01 0.79 ± 0.01 0.91 ± 0.01 0.84 ± 0.01 0.85 ± 0.01

Only most important 
features

RF 0.60 ± 0.02 0.69 ± 0.03 0.50 ± 0.02 0.59 ± 0.02 0.60 ± 0.02

DT 0.57 ± 0.03 0.63 ± 0.01 0.54 ± 0.04 0.57 ± 0.02 0.58 ± 0.03

NB 0.54 ± 0.01 0.52 ± 0.01 0.57 ± 0.01 0.54 ± 0.01 0.54 ± 0.01

ANN 0.54 ± 0.01 0.55 ± 0.01 0.52 ± 0.01 0.53 ± 0.01 0.53 ± 0.01

SVM 0.58 ± 0.01 0.51 ± 0.01 0.70 ± 0.01 0.60 ± 0.01 0.61 ± 0.01

XGboost 0.58 ± 0.01 0.57 ± 0.01 0.59 ± 0.01 0.58 ± 0.02 0.58 ± 0.01

LGBM 0.62 ± 0.02 0.61 ± 0.02 0.63 ± 0.03 0.62 ± 0.02 0.62 ± 0.02

Adaboost 0.62 ± 0.01 0.69 ± 0.01 0.51 ± 0.01 0.61 ± 0.01 0.60 ± 0.01

CNFE-SE without FE 0.72 ± 0.01 0.71 ± 0.01 0.74 ± 0.01 0.72 ± 0.01 0.72 ± 0.01

CNFE-SE with FE 0.87 ± 0.01 0.82 ± 0.01 0.92 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

Fig. 3 One complex network extracted from only 100 data records 
treated by IUI method
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In the normal stacking mode, the base classifiers in each 
layer use the output scores of the previous ones as the 
predictors similar to a typical feedforward neural network. 
The formula of normal stacking mode is written as Eq. (6):

where n indicates the nth layer of the stacked ensemble, x 
denotes a sample of a dataset, V presents a vector holding 
the neurons (the base classifiers), D is the number of hid-
den neurons through the nth hidden layer and finally, k is 
the kth neuron in the nth layer.

Some previous studies have illustrated that the stacked 
models can improve the performance of the classifica-
tion [20, 21, 30]. Therefore, in this study, a new stacked 
ensemble classifier is proposed and designed based on 
the normal stacking mode. In the beginning, some of the 
basic classifiers are trained, and those outperforming the 
others are selected to be considered as the base classifiers 
in the stacked ensemble layers. The architecture of the 
proposed stacked ensemble classifier is shown in Fig. 6.

As illustrated in Fig. 6, input dataset consists of the fea-
tures in OFS, FS-Fi, EFS and/or EFS-Fi. Input dataset is 
fed to the base classifiers in the first layer of the proposed 
stacked ensemble classifier.

Several different classifiers are trained and verified. 
The classifiers for using in the ensemble layers of our 
proposed stacked ensemble classifier are chosen among 
different trained classifiers with different values of hyper-
parameters based on their accuracy and diversity on 
the validation dataset. A previous study has proposed a 
method to choose classifiers for ensemble learning based 
on accuracy and diversity which is used in this study for 
the same purpose. The pairwise diversity of the classifiers 
are calculated using Q statistic.

(6)

fn(xV ) = Vnk

(

fn−1(xVn−11)fn−1(xVn−12), . . . ,

fn−1

(

xVn−1Dn−1

))

Logistic regression (LR) [31], support vector machines 
(SVM) [32], decision tree (DT) [33], random forest (RF) 
[26], Adaboost [34] and LightGradient Boosting Machine 
(LightGBM) [35] are the base classifiers chosen based on 
their accuracy and diversity in both ensemble layers.

LR, SVM with linear kernel and DT are appropriate 
classifiers for classifying linearly separable data. SVM 
with non-linear kernels, RF, Adaboost and LightGBM 
are ensemble classifiers which can classify nonlinearly 
separable data with high performance. All the mentioned 
classifiers can be trained fast. Therefore, they are chosen 
as the base classifiers of the proposed stacked ensemble 
classifier.

The hyperparameters of the classifiers are tuned based 
on grid search method and the best values for hyperpa-
rameters leading to the highest accuracy for validation 
dataset are considered for each classifier.

After training the base classifiers in the first layer, their 
outputs are considered as Meta features according to the 
normal stacking mode. The Meta features are fed into 
the base classifiers of the second layer for training them. 
Finally, the outputs of the base classifiers in the second 
layer are aggregated by weighted voting aggregation rule.

The weight of each base classifier is obtained by meas-
uring its accuracy for classifying the validation dataset. 
The validation dataset is about 20% of the original train-
ing dataset which is excluded during the base classifiers’ 
training in both layers.

Mathematical calculation is performed in this study to 
show the performance improvement obtained by stacked 
ensemble compared to traditional one-layer ensemble 
and the individual classifiers.

Without loss of generality, it is assumed that each base 
classifier in the first layer of stacked ensemble has the 
error rate of ε < 0.50. If the aggregation of the base clas-
sifiers is performed with bagging strategy which is the 

Fig. 4 Two complex networks drawn from the positive training data samples by a threshold of 0.7 * average of the distance Matrix, b threshold of 
0.5 * average of the distance matrix
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simplest aggregation method and uses majority voting, 
the error rate of the first ensemble layer (εL1) can be cal-
culated as Eq. (7):

where M is the number of the base independent classi-
fiers in the first ensemble layer. For misclassifying a data 
record using bagging strategy as the aggregation method, 
more than half of the base classifiers should misclas-
sify the record. If it is assumed that i is the number of 

(7)εL1 =

M
∑

i=
(

M
2 +1

)

(

M
i

)i

εi(1− ε)M−i

the base classifiers which misclassify the data record, i 
should be more than M/2 for misclassifying it with the 
first ensemble layer. For example, if M is 25, at least 13 
base classifiers should misclassify data for erroneous clas-
sifying data in ensemble of these base classifiers. Now, if 
ε is 0.35 for each of 25 base classifiers, εL1 will be 0.04. It 
shows the first layer of ensemble or traditional ensemble 
can improve the error rate of the single independent clas-
sifiers significantly.

Now, it is assumed that we have one more ensem-
ble layer such as a two-layer stacked ensemble. Bagging 
strategy uses simple majority voting for classifying data as 
Eq. (8):

(8)classLabelensemble

�

rj
�

=







Positive if
M
�

i=1

δ
�

classLabeli
�

rj
�

== Positive
�

> M
2

Negative otherwise







Fig. 5 Three complex networks extracted from the samples of a both classes, b negative class, and c positive class with the same threshold
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where  rj indicates the jth data record and i denotes the 
ith base classifier. As shown in Eq. (8), a simple decision 
tree or SVM with linear kernel can provide rules or find 
hyperplanes to classify data according to Eq.  (8). There-
fore, it can be shown that the performance of each base 
classifier in the second layer will not be worse than the 
simple bagging aggregation strategy used in the first 
ensemble layer.

This conclusion is true because each base classifier will 
try to find the hyperplane or rules to discriminate the 
training samples of two classes. But, bagging strategy uses 
simple majority voting. Furthermore, the input features 
(the first meta feature set as shown by Fig. 6) for the base 
classifiers of the second ensemble layer are the same as 
the input features fed to the bagging strategy in the first 
ensemble layer. These input features are the output class 
labels generated by the base classifiers in the first layer. 
Therefore, the error rate of each base classifier in the sec-
ond ensemble layer would be at most εL1.

The aggregation rule in the first ensemble layer is 
majority voting in the bagging strategy. The base clas-
sifiers try to separate the instances of different classes 
using linear or non-linear hyperplanes or rules. The input 
dataset for majority voting in the first ensemble layer 
is the first meta feature set. Therefore, the input of the 
majority voting rule and the base classifiers of the second 
ensemble layer is the same. The majority voting rule can 

be stated as Eq. (9) for the first meta feature set with M 
columns:

where MV is the majority voting strategy. Majority voting 
strategy is similar to using a hyperplane considering the 
equal coefficients for all of its input features as the sepa-
rator of two classes.

The base classifiers try to find a best hyperplane for dis-
criminating the instances of two classes. Therefore, their 
fitted hyperplane will not be worse than the hyperplane 
used with majority voting strategy. Thus, their perfor-
mance will be more than or equal to the performance of 
the majority voting in the first ensemble layer. Accord-
ing to the Eq. (7), it is shown that the performance of the 
majority voting will be much better than the performance 
of the single classifiers in the first ensemble layer. There-
fore, the performance of the single classifiers in the sec-
ond ensemble layer will be better than the performance 
of the single classifiers in the first ensemble layer.

According to Eq. (7), if the bagging strategy is used for 
the second ensemble layer, the error rate of the second 
ensemble layer in the stacked ensemble would be εL2 
which can be calculated as Eq. (9):

(9)

labelMV

�

rj
�

=







Positive if
M
�

i=1

classLabeli
�

rj
�

> 0

Negative otherwise







Fig. 6 a Input datasets, and b the architecture of the proposed Stacked Ensemble classifier
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where  M2 is the number of the base classifier in the sec-
ond ensemble layer of the stacked ensemble and εb2 is the 
error rates of the base classifiers in the second ensemble 
layer. As mentioned in the previous paragraph, the error 
rate of each base classifier in the second layer would be at 
most εL1. Therefore, εb2 will be not more than εL1.

According to Eq.  (7) and Eq.  (9), the relationship 
among ε, εL1 and εL2 can be shown in Eq. (10):

A previous study have demonstrated that adding more 
layers to stack ensemble can improve the classification 
performance in terms of accuracy and AUC [1].

Based on the obtained results, it can be shown that 
adding more layers to stacked ensemble can improve its 
performance. Although, adding more layers has higher 
burden of time complexity and memory usage, too.

There are a few studies considering the effect of the 
ensemble size or cardinality (the number of the base clas-
sifiers in the ensemble classifier) on the performance of 
the ensemble method [1, 2]. The previous studies have 
shown the ensemble size depends on the diversity of the 
base classifiers included in the ensemble and its aggrega-
tion rule [1, 2]. In addition, a previous study has exam-
ined different ensemble sizes including 10, 20, 50 and 100 
classifiers for bioinformatics applications [3]. They have 
shown that the best ensemble size has been 50 but the 
ensemble size of 10 is sufficient to achieve to highly rea-
sonable performance [3].

(10)εL2 =

M2
∑

j=
(

M2
2 +1

)

(

M2
j

)

ε
j
b2(1− εb2)

M2−j
≤

M2
∑

j=
(

M2
2 +1

)

(

M2
j

)

ε
j
L1(1− εL1)

M2−j

(11)εL2 ≪ εL1 ≪ ε

used in this study including Accuracy, Sensitivity, Speci-
ficity and F-Score as shown in Eq. (11) -(14):

where TP and FP (TN and FN) indicate the number of 
instances in the positive (negative) classes which are clas-
sified correctly and incorrectly, respectively.

Moreover, the area under the curve (AUC) of the 
receiver operating curve (ROC) is considered.

In order to validate the results, the experiments are 
repeated 50 times, and each time the data is selected 
based on fivefold C.V.

A novel method named as A-Test has been proposed in a 
previous study to calculate the structural risk of a classifier 
model as its instability with the new test data [36]. A-test 
calculates the misclassification error percentage Γζ,K for dif-
ferent K values using the balanced K-fold validation. In this 
study, the values of Γζ,K will be reported for different classi-
fiers and different feature sets. Γζ,K is calculated as Eq. (15):

where  Kmax cannot be more than the size of the minor-
ity class. For estimating the structural risk of a classifier 
method, the average of the values of Γζ,K is considered as 
Eq. (16):

(12)Accuracy =
TP + TN

N

(13)Sensitivity =
TP

TP + FN

(14)Specificity =
TN

TN + FP

(15)F − Score = 2×
Sensitivity× Specificity

Sensitivity+ Specificity

Ŵζ ,K =
100

N









N
�

i=1

δ((predictedLabel = Negative).(realLabel = Positive))

+

N
�

i=1

δ((predictedLabel = Positive).
�

realLabel == Negative
�

)









(16)K = 2. . . . .Kmax

(17)Ŵ∧
ζ =

∑Kmax
K=2 Ŵζ ·K

Kmax − 1

Scoring the ignored feature
As mentioned in Sect.  1.5, MDA score is calculated for 
each feature and is considered as the feature importance 
score.

Evaluating and validating the trained models
To evaluate the performances of the trained models, the 
performance measures for classification problems are 
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where Γζ^ ranges from 0 to 100% which higher val-
ues show higher risk of classification and lower values 
show the higher capacity and generalization ability of 
the model. Therefore, the lower values of Γζ^ are more 
desired.

Experimental results
In this section, the features are ranked based on MDA 
obtained by ignoring them during the training of CNFE-
SE. Then the partial dependencies between high-ranked 
features are discussed. Finally, the performance of the 
proposed model (CNFE-SE) is compared with other 
state-of-the-art classifiers.

Ranking the significance of features
Figure 7 represents top-20 important features with high-
est MDA score for IUI outcome prediction based on 50 
repetitions of CNFE-SE training on different training 
samples. Post wash total motile sperm counts, female 
BMI, sperm motility grades a + b, total sperm motility 
and sperm motility grade c are high-ranked predictors of 
IUI outcome. Additionally, post-wash total motile sperm 
counts, female BMI, and total sperm counts are the fea-
tures illustrated with dark blue colors in Fig. 7, have the 
highest repetitions as the first informative features. Gen-
erally, the variables related to the men’s semen analysis 
parameters are high-ranked features in this study.

The Pearson correlation coefficients are calculated 
among the top-20 important features, and Fig. 8 depicts 
the heat map of the correlation coefficients.

As shown by Fig.  8, the male semen parameters are 
positively correlated to each other, the more sperm con-
centration, the more total sperm count, and the more 
total motile sperm count. Also, couples’ duration of infer-
tility and duration of marriage are positively correlated.

Figure 9 shows the exact values of MDA score for top-
20 features in this study.

In addition, Table  3 lists MDA values of top-20 
features.

Partial dependency between the features
Figure  10 depicts the partial dependency plots for the 
most important features. Partial dependency plots show 
whether a feature has a positive or negative effect on the 
response variable when the other ones are controlled. 
However, in order to interpret the graphs, we should 
note that changes in the clinical pregnancy probabili-
ties in terms of the value of the features, even the most 
significant ones, are roughly small (the y-axis range is 
0.44–0.52). Therefore, it is noteworthy that none of the 
features could individually and significantly alter the 
pregnancy rates more than 0.52. This finding underlines 
the value of the machine learning approach by determin-
ing the complicated association between individual pre-
dictors to make an effective classification model.

Fig. 7 Overview of top features ranked based on CNFE-SE
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According to the results of the partial dependency plots 
as shown by Fig. 8, the clinical pregnancy rate has raised 
with increased number of post-wash total motile sperm 
counts and after processing sperm concentration. Also, 
when their values respectively vary upper than 100 mil-
lion and 30 million spermatozoa per ml, the rate of preg-
nancy reaches its highest rate. In addition, the likelihood 
of IUI success increases through growing the number of 
total sperm counts which is mentioned in the previous 
studies, too [37].

Comparing the performance of CNFE‑SE with other 
state‑of‑the‑art classifiers
Table  5 lists the performance measures for comparing 
CNFE-SE with other state of the art classifiers.

Two different feature sets are considered as the input 
variables fed to the classifiers including all 296 features 
and only the most important features (top-20 features 
shown in Fig.  6). Moreover, CNFE-SE is trained and 
evaluated twice (one time without doing feature engi-
neering (FE) and another time with performing feature 
engineering).

The models are executed and trained on differ-
ent random training samples up to 50 times and the 

Fig. 8 The pairwise correlation analysis of 20 most important features
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Fig. 9 MDA values of top-20 features in this study

mean ± standard deviation values are depicted in Table 5. 
The CNFE-SE outperforms the compared models by 
AUC of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity 
of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 when trains 
on all 296 features. Moreover, CNFE-SE has the supe-
rior performance when only 20-top features are fed to 
it as input variables with AUC of 0.87 ± 0.01, sensitivity 
of 0.82 ± 0.01, specificity of 0.92 ± 0.01 and accuracy of 
0.87 ± 0.01. Our obtained results show that feature engi-
neering and considering only 20-top features improve the 
performance of CNFE-SE.

Table  6 shows the confusion matrix of CNFE-SE for 
total dataset.

Figure 11 depicts ROC curve for CNFE-SE trained with 
all features.

As shown by Fig. 11, AUC of CNFE-SE trained on all 
features is 0.84 ± 0.01. As illustrated by Table 5, the com-
pared single classifiers show almost weak performances. 
The main reason is that the patients treated with IUI do 
not have complicated conditions and the leading cause 
of their infertility is idiopathic. Therefore, the data of 
the two classes have high similarity with each other, and 
their differentiation using single classifier is not an easy 
task. However, among these models, Light-GBM as one 
of state-of-the-art machine learning algorithms has the 

second best performance because it is a gradient boost-
ing framework that uses tree-based learning algorithms 
and not only covers multi hyper-parameters but also has 
more focus on the accuracy of the results [35].

When the classes are imbalanced, Precision-Recall 
curve is a useful instrument for the presentation of pre-
diction success. A great area under this curve shows both 
high precision, which is related to low false-positive rate, 
and high recall, refers to low false-negative rate. Figure 12 
indicates the precision-recall curves for CNFE-SE trained 
using top-20 features.

As shown in Fig.  12, CNFE-SE predicts both classes 
with highly reasonable performance.

Moreover, the results of A-test method for structural 
risk calculation for different combinations of feature sets 
and classifiers are shown in Table 7.

Lower values of Γζ^ and Γζ shows lower risk of the clas-
sifier for classifying previously unseen records and the 
higher capacity and generalization ability of the model. 
Therefore, the feature set and classifier achieving the 
lower values of Γζ^ and Γζ is more desired. As shown by 
Table  7, CNFE-SE trained using top-20 features has the 
superior performance based on A-Test results.
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Discussion
In the current study, among the various features that 
significantly affect the IUI outcome, the most potential 
predictors are female BMI and semen quality param-
eters. Semen data such as sperm count and motility are 
illustrated as the most prognostic factors in pregnancies, 
conceived by IUI and their association with IUI outcome 
have demonstrated in some previous studies [38]. More-
over, some previous studies have confirmed that semen 
descriptors, after the swim-up procedure have been more 
important than the ones before sperm washing process 
[39, 40]. Similarly, the percentage of motile sperm and 
its progression in the ejaculate have been known as sig-
nificant predictors in IUI outcome prediction in the lit-
erature [41, 42]. Sperm motility grades a + b (progressive 
motility) and grade d (immotile sperms) are also deter-
mined in this study as potential predictive factors for a 
successful IUI [43]. Thus, if their corresponding values 
are more than 20% and less than 15%, respectively, the 
IUI success rate is higher.

Furthermore, the results of this study indicates that 
the IUI success rate is almost low when the female BMI 
is abnormal (BMI is lower than 20 or larger than 30). If 
female BMI is about 25 as the normal BMI value, the 
probability of pregnancy increases. This finding is men-
tioned in the previous studies, too [44].

Previous studies have shown that pregnancy rate could 
be reduced by increase in the female age [42, 45]. The 
present study identifies that the women older than 38 
have a lower chance of successful IUI. However, Edrem 
et  al. have not found the female age to be a prognostic 
factor in the prediction of IUI outcome [46].

Fig. 10 Partial dependency plots of nine features among the important features which the blue curves indicate locally weighted smoothing. It 
shows pregnancy variation obtaining from CNFE-SE (y-axis) as a function of a feature (x-axis) in IUI

Table 5 The confusion matrix of CNFE-SE for total dataset

Real positive Real negative

Predicted positive 1296 860

Predicted negative 321 8772
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As shown in Fig. 8, the duration of infertility inversely 
affects the fertility rate, and the decline in fecundity is 
acclaimed by some previous works, as well. Also, the pre-
vious studies have shown that when the couples’ duration 
of infertility is less than six years, the pregnancy success 
rate is higher [47].

The total dose of gonadotropins is taken into account 
in this study as an important feature. Moreover, its 

significance has been considered recently, too [11]. This 
study identifies that the total dose of gonadotropin is 
positively correlated with the pregnancy rate. Moreo-
ver, other factors contributing to failure or success of 
IUI outcome according to this study’s findings include 
semen volume, male age, sperm normal and amorphous 
morphology, duration of the marriage, and endometrial 
thickness which some of them have been demonstrated 
as the influential attributes in some previous studies 
[48–50].

Eventually, the CNFE-SE is trained using the 20 most 
important features and it yields surprisingly good perfor-
mances (AUC = 0.87, 95% CI 0.86–0.88). It shows that 
the model carried out by these features, demonstrates a 
highly reasonable performance.

Some studies consider different patients’ cycles as 
independent of each other, which may lead to a biased 
result. For example, they have considered the first cycle 
information [16, 51]. Our reanalysis of the primary cycle 
data revealed that the AUC performances of Light-GBM 
and CNFE-SE are 0.62 ± 0.01 and 0.84 ± 0.01, respec-
tively, which does not change significantly when all the 
cycles are taken into account. Moreover, as shown in 
the materials and methods section, increasing the num-
ber of cycles augment the clinical pregnancy rate which 
are in line with the importance of this feature in subse-
quent IUI outcome [52, 53]. On the contrary, the variable 
cycle number has not identified as an important fea-
ture according to CNFE-SE feature scores. This finding 
may be due to the high number of data in the first cycle 
compared to the second, third and more cycles, which 
approximately 74% of the data belongs to the first cycle 
of IUI treatment.

Finally, our study has some restrictions. Some of the 
female hormonal tests including FSH, TSH, LH, and 
AMH have not been measured in all the patients before 
beginning IUI cycle, and therefore they are eliminated 

Table 6 Results of  the  A-Test: The values of  Γζ^ 
and the minimum value of Γζ

Feature set Classifier Γζ^ Minimum of Γζ

All 296 features RF 26.1 12.8

DT 24.6 14.1

NB 24.9 12.6

ANN 25.5 14.5

SVM 24.7 20.7

XGboost 24.3 15.4

LGBM 24.6 14.2

Adaboost 25.8 12.7

CNFE-SE without FE 16.9 11.7

CNFE-SE with FE 11.3 6.8

Only most impor-
tant features

RF 24.7 13.5

DT 24.3 14.9

NB 23.6 16.1

ANN 24.6 15.8

SVM 23.7 16.4

XGboost 23.1 15.9

LGBM 22.3 13.7

Adaboost 21.5 13.6

CNFE-SE without FE 16.1 11.3

CNFE-SE with FE 10.9 6.2

Fig. 11 ROC curve for CNFE-SE trained with all features

Fig. 12 Precision-recall curves for CNFE-SE
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from the analysis due to their high missing value rate. At 
the Royan center, the patients who are entering the IUI 
treatment cycles are those who do not have complicated 
conditions, and the women’s hormonal tests are usually 
normal. Moreover, the male BMI is excluded because of 
its high rate of missing values. The features describing the 
geographic information of couples’ habitats are removed 
from the study due to their low quality data entry.

Currently machine learning algorithms has been 
increasingly employed in different medical fields [8]. 
Therefore, through using machine learning meth-
ods, we are able to predict the success or failure of the 
IUI cycle treatment outcome for each couple, based on 
their demographic characteristics and cycle information. 
In other words, our proposed CNFE-SE model shows 
superior performance among the compared state of the 

art classifiers. A decision support system (DSS) can be 
designed and implemented based on CNFE-SE. This DSS 
can help the physicians to choose other treatment plans 
for the couples and reduce patients’ costs if their IUI 
cycle success rate is low. The schematic of this medical 
assistance system is shown in Fig. 13.

The proposed DSS is trained on the training dataset 
by CNFE-SE after preprocessing the collected dataset. 
After completing the training of CNFE-SE, every time a 
new data record is registered in the DSS, it can be classi-
fied by CNFE-SE into positive or negative outcome. The 
predicted outcome for the new data record can assist the 
physicians to decide to treat the couple with IUI method 
or not.

Table 7 The processing time details for our proposed method (FE: Feature engineering using complex network analysis)

Feature set Model Time for training (.sec) Time for applying 
on one test data record 
(.sec)

All 296 features CNFE-SE without FE 1751.62 21.47

All 296 features CNFE-SE with FE 1902.88 28.13

top 20 features CNFE-SE without FE 619.63 8.05

Top 20 features CNFE-SE with FE 744.92 11.26

Fig. 13 Schematic of our proposed medical decision support system for IUI outcome prediction
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Conclusion
In conclusion, the use of machine learning methods to 
predict the success or failure rate of the IUI could effec-
tively improve the evaluation performances in com-
parison with other classical prediction models such as 
regression analysis. Furthermore, our proposed CNFE-SE 
model outperforms the compared methods with highly 
reasonable accuracy. CNFE-SE can be used as clinical 
decision-making assistance for the physicians to choose 
a beneficial treatment plan with regards to their patients’ 
therapy options, which would reduce the patients’ costs 
as well.

The experimental results in this study show that the 
most important features for predicting IUI outcome are 
semen parameters (sperm motility and concentration) as 
well as female BMI.

Some features which have been identified as good dis-
criminative features for IUI outcome prediction in the 
previous studies are excluded from this study because 
of their high missing value rate. For example, some of 
the female hormonal tests including FSH, TSH, LH, 
and AMH are not routinely measured in all the patients 
before IUI and they are excluded from the study. It is 
proposed to augment dataset with data records without 
missing value in the mentioned features and consider 
the excluded features to CNFE-SE, and then try to rank 
the augmented feature set and evaluate the perfor-
mance of the classifier.

On the other hand, some data records have noisy 
information which can reduce the performance of the 
classifiers. As future work, it is suggested that improv-
ing the robustness of CNFE-SE against the noisy data 
by including vote-boosting and other previously pro-
posed methods for increasing the noise robustness of 
the classifiers. Moreover, the data is highly imbalanced 
which can have negative effect on the classifiers’ perfor-
mance. As another research opportunity, it is suggested 
that reducing the influence of data distribution per 
class by incorporating the advanced balanced sampling 
strategies.

Determining the optimal ensemble size is a chal-
lenging issue, yet. It is suggested that the impact of the 
ensemble size on the overall performance of stacked 
ensemble is studied in the future studies on different 
tasks and different datasets.
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Table 8 Feature description for our dataset

Variable Variable levels Variable type

Endoscopy-hysteroscopy 0, 1st Hysteroscopy, 1st Hysteroscopy | 2nd Hysteroscopy, 1st Hysteroscopy 
| 2nd Hysteroscopy | 3rd Hysteroscopy,, 3rd Hysteroscopy | 1st Hyster-
oscopy, 4th Hysteroscopy | 3rd Hysteroscopy | 1st Hysteroscopy | 2nd 
Hysteroscopy

Nominal

Endoscopy-laparoscopy 0, 1st laparoscopy, 1st laparoscopy | 2nd laparoscopy, 2nd laparoscopy Nominal

Endocrine disorder-pituitary 0, acromegaly, Prolactinoma Nominal

History-Habit 0, Alcohol, Alcohol | smoking, smoking Nominal

Medical HX-neuro psychological 0, Anxiety, depression, depression | Epilepsy, Epilepsy, Psychotic disorder Nominal

Medical HX-GI 0, Appendicitis, IBD, IBS, IBS | Peptic ulcer, Peptic ulcer Nominal

Medical HX-immunologic disorder 0, Arthritic rheumatoid, lupus Nominal

Medical HX-respiratory disease 0, Asthma, Bronchiectasis, bronchitis, bronchitis | Asthma Nominal

Common surgery-orchiopexy 0, Bilat, Bilat | Left | Right, Left, Right, Right | Left Nominal

Common surgery-varicocelectomy 0, Bilat, Left, Left | Bilat | Right, Left | Right, Right Nominal

Common surgery-hernia 0, Bilat, Left, Left | Right, Left | Right | Bilat, Right Nominal

Common surgery-hydrocele 0, Bilat, Left, Right Nominal

History-nipple discharge 0, Bilateral, Bloody, Unilateral Nominal

Current drug-antihyperprolactinemia 0, Bromocriptin, Bromocriptin | Dostinex, Dostinex Nominal

Medical HX-infection disorder 0, Brucellosis, Hepatitis A, Hepatitis B, Hepatitis C, Herpes, TB Nominal

Endocrine disorder-thyroid 0, cancer, Hyper, Hyper | Hypo, Hypo, Nodule Nominal

Medical HX cardiovascular disorder 0, DVT, Heart failure, Hypertension, Hypertension | MVP, MVP Nominal

Menstrual criteria-with drug 0, Estrogen, OCP, Progesterone, Progesterone | Estrogen, Progesterone | 
OCP

Nominal

History-pelvic infection HX 0, Frequent discharge, History Of PID Nominal

Current drug-antidiabetic 0, Glucophage, Metformin, Metformin | Glucophage, Metformin | Paraovar-
ian cyst, Paraovarian cyst

Nominal

LT G 0, II, II | III, II | Time of Injection, III, Time of Injection Nominal

RT G__1 0, II, II | Time of Injection, Time of Injection Nominal

LT G__1 0, III, Time of Injection Nominal

Medical HX-blood disorder 0, Iron anemia, Major thalassemia, minor thalassemia Nominal

Common surgery-orchiectomy 0, Left, Right Nominal

Current drug-thyroid drugs 0, Levothyroxin, Levothyroxin | metimazole, metimazole, PTO Nominal

Past-irreg 0, Oligomenorrhea, Poly menorrhea Nominal

Medical HX-renal disease 0,Recurrent infection, Renal anomaly, Renal stone Nominal

Diabetes-1st degree relative 0,Type I, Type I | Type II, Type II Nominal

Endocrine disorder-D.M 0, type1, type2 Nominal

diagnosis-Uterine F adenomyosis, Anomaly, Asherman, Myoma, Negative, Unexplained (thin 
endometrium)

Nominal

diagnosis-ovulatory F Age factor, Diminished ovarian reserve, Endocrine problem, Hypothalamic 
hypogonadism, Negative, PCOS

Nominal

Therapeutic-agglutination all, few, most, none, some Nominal

Specimen characteristics-color Amber-Yellow, gray | yellow, Grey, Light-Yellow, Milky, White, White–Grey Nominal

Therapeutic-type of sampling Coitus, Coitus | Masturbation, Masturbation, Retrograde ejaculation, Retro-
grade ejaculation | Coitus

Nominal

Therapeutic sperm preparation -technique Discontinuous gradient, Pure sperm | Discontinuous gradient, Swim up, 
Swim up | Discontinuous gradient

Nominal

diagnosis-recurrent abortion Endocrine, Male, Negative, Thrombotic, unexplained Nominal

Tuboperitoneal type Endometriosis, EP Hx, hydrosalipinx, Idiopathic, Negative, Post surgery Nominal

diagnosis-unexplained Endometriosis, Idiopathic, Negative Nominal

diagnosis-other diagnosis Genetic, Impotency, Incomplete data, Negative, other, poor obstetric 
outcome, sex selection, Vaginismus

Nominal

Menstrual criteria-amount hypermenorrhea, Hypo menorrhea, Normal Nominal

IUI clinic-IUI catheter INDOVASIVE, Other, INDOVASIVE | Other, Catheter Impex, ORI Nominal
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Table 8 (continued)

Variable Variable levels Variable type

Past-type more than 8 levels Nominal

Surgical HX-non gynecologic surgery more than 8 levels Nominal

DRUG HX-past drug more than 8 levels Nominal

Male medical information-exposures more than 8 levels Nominal

Male medical information-drug Hx esp more than 8 levels Nominal

Coded after processing-progression more than 8 levels Nominal

Coded before processing-progression more than 8 levels Nominal

Therapeutic-viscosity Normal, Somewhat Thick, Thick, Thin, Very thick Nominal

Specimen characteristics-viscosity Normal, Somewhat Thick, Thick, Very Thick Nominal

Family history endocrine disorder-thyroid NO, YES Binominal

Male medical information-scrotum Ab, NL Binominal

Specimen characteristics-collect type C, M Binominal

Therapeutic-place of sampling In, Out Binominal

Therapeutic-SPLIT Ejaculation NO, YES Binominal

Menstrual Criteria-Interval Normal (22–35 days), Abnormal (< 21, > 36 days) Binominal

Infertility type primary, secondary Binominal

Relationship-First cousin 0,1 Binary

Relationship-distant relationship 0,1 Binary

No relationship 0,1 Binary

Diagnosis-Male factor 0,1 Binary

Past-Reg (menstruation) 0,1 Binary

Current-Reg (menstruation) 0,1 Binary

Irreg-Oligomenorrhea 0,1 Binary

Irreg-Poly menorrhea 0,1 Binary

Cycle-Amenorrhea 0,1 Binary

Amenorrhea-Primary 0,1 Binary

Amenorrhea-Secondary 0,1 Binary

Menstrual Criteria-IMB 0,1 Binary

Coital HX-Lubricant 0,1 Binary

Coital HX-PCB 0,1 Binary

Coital HX-Vaginismus 0,1 Binary

Coital HX-Impotency 0,1 Binary

History-Cytotoxic Therapy 0,1 binary

Allergy-food 0,1 Binary

Allergy-seasonal 0,1 Binary

Allergy-Skin 0,1 Binary

Allergy-respiratory 0,1 Binary

Family history-infertility 0,1 Binary

Family history-recurrent abortion 0,1 Binary

Family history-POF 0,1 Binary

Family history-hearing disorder 0,1 Binary

Family history-TB 0,1 Binary

Family history-mental retardation 0,1 Binary

Cardio vascular-myocardial infarction 0,1 Binary

Cardio vascular-HTN 0,1 Binary

Respiratory disorder-Asthma 0,1 Binary

Thalassemia-minor 0,1 Binary

Type of cancer-breast cancer 0,1 Binary

Type of cancer-colon cancer 0,1 Binary
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Table 8 (continued)

Variable Variable levels Variable type

Type of cancer-leukemia 0,1 Binary

Type of cancer-uterus cancer 0,1 Binary

Type of cancer-lung cancer 0,1 Binary

Family history-epilepsy 0,1 Binary

Antihyperprolactinemia-Bromocriptin 0,1 Binary

Antihyperprolactinemia-Dostinex 0,1 Binary

Current drug-Anti Depression 0,1 Binary

Current drug-Anti hypertension 0,1 Binary

Current drug-Anticoagulant 0,1 Binary

Current drug-Folic acid 0,1 Binary

Current drug-Estrogen 0,1 Binary

Current drug-Progestron 0,1 Binary

Current drug-Ferrous sulphate 0,1 Binary

Current drug-Multi vitamin 0,1 Binary

Physical Exam-hirsutism 0,1 Binary

Type of pregnancy-Clinical pregnancy (class variable) 0,1 Binary

Minimal stimulation-Gonadotropin 0,1 Binary

Minimal stimulation-Letrosol 0,1 Binary

Minimal stimulation-Clomiphen 0,1 Binary

Type-Cetrorelix 0,1 Binary

HCG.IU_5000 0,1 Binary

HCG.IU_10000 0,1 Binary

HCG.IU_15000 0,1 Binary

Buserelin_0.5 cc 0,1 Binary

Ovitrelle_250 mgr 0,1 Binary

Ovitrelle_500 mgr 0,1 Binary

Type-Fostimon 0,1 Binary

Type-Gonal.F 0,1 Binary

Type-Menopour 0,1 Binary

Type-HMG 0,1 Binary

Type-Merional 0,1 Binary

Type-Bravelle 0,1 Binary

Before Stimulation-OCP 0,1 Binary

Before Stimulation-Estradiol 0,1 Binary

Cotreatment-Aspirin 0,1 Binary

Adjuvant therapy-Acid folic 0,1 Binary

Right-PCO 0,1 Binary

Right-Cyst 0,1 Binary

Left-PCO 0,1 Binary

Left-Cyst 0,1 Binary

Endometrial Texture-Three line 0,1 Binary

have you married before-yes 0,1 Binary

did you have any child-no 0,1 Binary

Common surgery-T.BX 0,1 Binary

Common surgery-Vasectomy 0,1 Binary

Uncommon surgery-Urethral stricture 0,1 Binary

Uncommon surgery-Brain surgey 0,1 Binary

Medical history-Mumps 0,1 Binary

Medical history-Hypertension 0,1 Binary
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Table 8 (continued)

Variable Variable levels Variable type

Medical history-Veneral Dz 0,1 Binary

Medical history-Allergy 0,1 Binary

Medical history-D.M 0,1 Binary

Medical history-M orchitis 0,1 Binary

Medical history-Test Pain 0,1 Binary

Medical history-TB 0,1 Binary

Medical history-Epididimorchitis 0,1 Binary

Medical history-UDT 0,1 Binary

Medical history-UTI 0,1 Binary

Cigarette-occasionally 0,1 Binary

Cigarette-quarter pack per day 0,1 Binary

Cigarette-half pack per day 0,1 Binary

Cigarette-one pack per day 0,1 Binary

Cigarette-two packs per day 0,1 Binary

Cigarette-three packs per day 0,1 Binary

Alcohol-occasionally 0,1 Binary

Alcohol-one per week 0,1 Binary

Opium-occasionally 0,1 Binary

Opium-one per day 0,1 Binary

Marital status of brothers-Married 0,1 Binary

Marital status of brothers-New couples 0,1 Binary

Family HX of infertility-Do your brothers have any children 0,1 Binary

Right testicle Size_less than 1 0,1 Binary

Right testicle Size_1-1.5 0,1 Binary

Right testicle Size_1.5–2 0,1 Binary

Right testicle Size_2-2.5 0,1 Binary

Right testicle Size_2.5–3 0,1 Binary

Right testicle Size_3-3.5 0,1 Binary

Right testicle Size_3.5–4 0,1 Binary

Right testicle Size_more than 4 0,1 Binary

Left testicle size_less than 1 0,1 Binary

Left testicle size_1-1.5 0,1 Binary

Left testicle size_1.5–2 0,1 Binary

Left testicle size_2-2.5 0,1 Binary

Left testicle size_2.5–3 0,1 Binary

Left testicle _3-3.5 0,1 Binary

Left testicle size_3.5–4 0,1 Binary

Left testicle size_more than 4 0,1 Binary

Vas-RT 0,1 Binary

Vas-LT 0,1 Binary

RT-NL 0,1 Binary

RT-Ab 0,1 Binary

LT-NL 0,1 Binary

RT-G 0,1 Binary

plan-med treatment 0,1 Binary

Vitamin-Vitamin C 0,1 Binary

Vitamin-Vitamin E 0,1 Binary

Plan-S.A 0,1 Binary

Plan-Imaging 0,1 Binary
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Table 8 (continued)

Variable Variable levels Variable type

Plan-H.A 0,1 Binary

Plan-CW 0,1 Binary

Plan-KARYO 0,1 Binary

Plan-AZF 0,1 Binary

Plan-TESE 0,1 Binary

Plan-Wives visit by Gyn required 0,1 Binary

Plan-Varicocelectomy 0,1 Binary

Plan-sperm Freezing 0,1 Binary

Plan-PC.U.A 0,1 Binary

Plan-genetic consult 0,1 Binary

Plan-endocrine consult 0,1 Binary

Plan-DFI 0,1 Binary

Plan-stop smoking, alcohol, opium 0,1 Binary

Plan-Occupation hygiene 0,1 Binary

Plan-Low weight 0,1 Binary

Plan-Others 0,1 Binary

Morphology-Amorph 0,1 Binary

Morphology-giant head 0,1 Binary

Morphology-pin head 0,1 Binary

Morphology-round head 0,1 Binary

Morphology-cytoplasmic droplet 0,1 Binary
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Table 9 Summary statistics for the features of our dataset

Feature name Min First Q Median Third Q Max Mean SD

Time diff between cycles 0 0 0 2 6.1 1.59 4.82

0 0 0 1 6.9 1.25 3.83

Age_x 17 25 28 31 43 28.29 4.29

16 26 29 32 47 28.97 4.68

Family demographic information (Education_x) 1 3 3 5 7 3.43 1.17

1 3 3 5 7 3.4 1.22

Duration of marriage (years) 0.42 4 6 7 23 6 2.94

0.25 4 6 7.5 26 6.31 3.19

Duration of infertility (Years) 0.25 2.5 4 5 15 4.36 2.62

0.17 2.84 4.5 6 19 4.66 2.85

Menstrual HX (menarche old year) 9 13 13 14 27 13.35 1.46

9 13 13 14 27 13.29 1.42

Current contraception duration 0 0 0 0 3 0.02 0.17

0 0 0 0 8 0.01 0.19

Summary-Gravida 0 0 0 0 6 0.29 0.66

0 0 0 0 6 0.26 0.61

Summary-para 0 0 0 0 3 0.08 0.31

0 0 0 0 4 0.08 0.3

Abortion-early 0 0 0 0 4 0.17 0.48

0 0 0 0 6 0.15 0.45

Abortion-late 0 0 0 0 3 0.02 0.16

0 0 0 0 4 0.01 0.11

Summary-IUFD 0 0 0 0 2 0.01 0.11

0 0 0 0 2 0 0.07

Summary-mole 0 0 0 0 1 0 0.06

0 0 0 0 2 0 0.04

Summary-EP 0 0 0 0 1 0.01 0.11

0 0 0 0 1 0.02 0.12

Summary-Preterm 0 0 0 0 3 0.03 0.2

0 0 0 0 5 0.02 0.16

Summary-term 0 0 0 0 2 0.06 0.25

0 0 0 0 4 0.06 0.26

Summary-living child 0 0 0 0 2 0.06 0.24

0 0 0 0 4 0.06 0.25

IUI Hx-total 2 2 2 3 10 2.73 1.47

2 2 2 3 11 2.7 1.4

Result-failed 0 0 0 0.41 6 0.39 0.78

0 0 0 1 10 0.41 0.78

Result-pregnant 0 0 0 0 2 0.04 0.2

0 0 0 0 2 0.02 0.14

Summary of ART cycle-IVF 0 0 0 0 2 0.01 0.13

0 0 0 0 6 0.03 0.24

Summary of ART cycle-ZIFT 0 0 0 0 1 0 0.02

0 0 0 0 3 0 0.06

Summary of ART cycle-E.T freeze 1 1 1 1 4 1.01 0.11

1 1 1 1 5 1.01 0.1

Summary of ART cycle-Total 0 0 0 0 4 0.02 0.2

0 0 0 0 9 0.04 0.31

Physical exam-height 142 158 161.05 165 187 161.61 5.74
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Table 9 (continued)

Feature name Min First Q Median Third Q Max Mean SD

142 157 161.05 164 187 160.96 5.7

Physical exam-weight 40 61 67.31 74 170 68.14 12.54

36 60 67 73 171 67.18 11.65

Physical exam-BMI 15.02 23.53 25.93 28.04 52.11 26.01 4.23

14.19 23.34 25.93 28.01 57.09 25.92 4.22

IUI clinic-number of cycle 1 1 1 2 5 1.35 0.63

1 1 1 2 7 1.31 0.59

Infertility medical treatment-Starting day of Stimulation (menstrual day) 1 3 3 3.42 8 3.39 0.73

1 3 3 3.42 14 3.42 0.82

Letrosol dose (mg/day) 0 0 0 1.12 7.5 1.28 2.04

0 0 0 1.12 7.5 1.1 1.9

Letrosol duration 0 0 0 1.19 12 1.34 2.17

0 0 0 1.19 15 1.16 2.05

Letrosol start day of stimulation 0 0 0 0.77 5 0.86 1.41

0 0 0 0.77 17 0.76 1.38

Clomiphen dose (mg/day) 0 0 59.87 100 150 57.97 45.82

0 0 100 100 150 60.19 45.54

Clomiphen duration 0 0 3 5 12 2.94 2.33

0 0 5 5 15 3.07 2.36

Clomiphen Start day of stimulation 0 0 2.08 3 6 2 1.66

0 0 2.08 3 18 2.09 1.7

Summary of foliculogenesis-duration of stimulation 1 9 10.23 11 25 10.41 2.59

1 9 10.23 11 31 10.2 2.63

Fostimon dose IU 0 0 0 77.03 337.5 91.4 23.39

0 0 0 77.03 247.5 74.61 18.54

Gonal.F dose IU 0 0 0 0 3750 60.96 26.71

0 0 0 0 6847 60.2 23.93

Menopour Dose IU 0 0 0 0 2700 10.65 125.74

0 0 0 0 3300 9.74 104.92

HMG dose IU 0 0 0 150 2625 116.59 221.67

0 0 0 150 3300 125.45 230.94

Merional dose IU 0 0 0 0 3900 66.25 295.78

0 0 0 0 9075 44.76 202.57

Hemogon dose IU 0 0 0 0 1200 3.09 44.01

0 0 0 0 3000 4.95 55.65

Menogan dose IU 0 0 0 0 3450 46.63 195.23

0 0 0 0 3600 44.2 163.25

Bravelle dose IU 0 0 0 0 1050 7.93 57.94

0 0 0 0 2100 9.55 77.96

Gonadotropin total dose 0 225 375 450 4500 453.57 502.6

0 225 375 450 4424 411.52 410.99

Esteradiol dose 0 0 0 0 6 0.33 0.99

0 0 0 0 8 0.42 1.16

Esteradiol duration 0 0 0 0 15 0.25 0.95

0 0 0 0 14 0.3 0.96

No of dominate follicle at HCG day_17 0 1 1.65 2 10 1.81 1.46

0 1 1.65 2 11 1.61 1.38

No of dominate follicle at HCG day_18 0 0 0.95 1 7 0.97 0.95

0 0 0.94 1 9 0.92 0.87
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Table 9 (continued)

Feature name Min First Q Median Third Q Max Mean SD

HCG day endometrium (endometrial thickness) 4.3 8 8.51 9 19 8.67 1.47

1 8 8.52 9 18 8.48 1.51

Age_y 20 30 33 35 72 32.82 4.7

20 30 33 36 80 33.35 4.88

Family demographic information (Education_y) 1 2 3 4 7 3.38 1.23

1 2 3 4 7 3.31 1.25

Specimen characteristics-abstinence 0.41 3 4 4.59 20 4.42 1.79

0.41 3 4 4.59 20 4.43 1.89

Specimen characteristics-volume (normal range 2.7 mL) 0.1 2 3.2 4 9.5 3.29 1.56

0.1 2 3 4 10.5 3.23 1.54

Specimen characteristics-PH 6 7.8 7.8 7.8 8.5 7.8 0.11

6 7.8 7.8 7.8 85 7.8 0.10

Specimen characteristics liquefaction time (normal range15-30 min) 20 20 20 30 60 26.10 8.60

15 20 20 25.53 60 25.34 8.48

Sperm concentration- total sperm count 10 104 170.1 202.72 399 165.46 84.57

10 92.5 168 204 400 163.60 88.18

Sperm motility-total motility (normal range 50) 10 40 57.3 72.22 98.8 55.94 19.87

10 37.6 55.9 72.22 100 54.51 21.10

Total motile sperm count 1.14 41.06 86.70 132.90 354.88 95.29 64.21

1 35.52 81.55 132.90 370.11 93.71 69.08

Sperm motility-shaking grade 0 0 0 0 5 0.03 0.36

0 0 0 0 15 0.03 0.48

Sperm motility-grade I- 0 0 0 0 19 0.12 1.14

0 0 0 0 34.3 0.12 1.16

Sperm motility-grade I (grade d) 0 0 3.6 8.2 37.3 5.3 5.92

0 0 3.6 8.2 46.4 5.40 6.18

Sperm motility Grade II- 0 0 0 0 50.3 0.27 3.04

0 0 0 0 57.6 0.21 2.57

Sperm motility Grade II (grade c) 0 10.27 26.7 36.8 64.7 24.11 16.26

0 11.9 26.4 36.7 70.0 24.25 15.97

Sperm motility Grade II + 0 0 0 0 23.2 0.01 0.58

0 0 0 0 37.3 0 0.38

Sperm motility Grade III (a + b) 0 2.7 9.8 18.6 48.9 11.96 10.76

0 3.3 9.8 17.8 49.8 11.96 10.82

Sperm morphology-normal morphology (normal range 30) 0 4 5.62 7 20 5.72 2.99

0 4 5.62 7 28 5.6 3.1

Sperm morphology-abnormal morphology (normal range 70) 80 93 94.38 96 100 94.27 2.99

72 93 94.38 96 133 94.4 3.13

Sperm morphology-amorph 0 69 76 80 92 68.59 22.61

0 68.66 75 80 96 68.68 21.7

Sperm morphology-double head 0 0 0 1.02 8 0.85 1.20

0 0 1 2 11 1.02 1.36

Sperm morphology-giant head 0 1 2 4 20 2.40 2.51

0 1 2 4 25 2.53 2.61

Sperm morphology-pin head 0 1 2 4 30 2.95 3.47

0 1 2 4 30 3.14 3.37

Sperm morphology-round head 0 1 2 4 20 2.85 2.92

0 1 2 4 20 2.66 2.69

Sperm morphology-double tail 0 0 0 0 4 0.14 0.47
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