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Abstract 

Careful estimation of global ductility will certainly lead to greater accuracy in the design of structural members. In this 

paper, a new and optimal intelligent model is proposed to predict the roof ductility (μR) of EBF steel frames exposed to 

the near-fault pulse-like earthquakes, using the Adaptive Neuro-Fuzzy Inference System (ANFIS). To achieve this goal, 

a databank consisting of 12960 data is created. To establish different geometrical properties of models, 3-,6-, 9-, 12-, 15, 

20-stories, steel EBF frames are considered with 3 different types of link beam, column stiffness, and brace slenderness. 

All models are analysed to reach 4 different performance levels using nonlinear time history under 20 near-fault 

earthquakes. About 6769 data are applied as ANFIS training data. Subtractive clustering and Fuzzy C-Mean clustering 

(FCM) methods are applied to generate the purposed model. The results show that FCM provides more accurate 

outcomes. Moreover, to validate the model, 2257 data are applied (as test data) in order to calculate the correlation 

coefficient (R) and mean squared error (MSE) between the predicted values of (μR) and the real values. The results of 

correlation analysis show the high accuracy of the proposed intelligent model. 

 

Keywords- Adaptive neuro-fuzzy inference system, Global ductility, Performance levels, EBF frames, Intelligent model. 

 

 

 

1. Introduction 
The ductility concept (demand and capacity) is well-defined in various performance levels with 

developing numerical techniques and the tendency of seismic codes to apply ductile structures. The 

primary classification provides three ductility types, the global, inter-story, and element ductility 

(Siahpolo et al., 2016). The global ductility, μR, involves various engineering demand parameters 

(EDP), including a plastic rotation at member ends, story-drift, and roof displacement (Xiang et al., 

2018). The structural seismic performance can be evaluated by the combination of the EDP and the 

intensity measure (IM) of ground motions (Xiang et al., 2018). A structure nonlinear seismic 

response, in the ductility-based methods, can be defined with a rather good accuracy (Tena-

Colunga, 2001). The IM of ground motions, in conventional ductility-based methods, is reflected 

by the structural strength reduction factor, R (or q), basically measuring the structural strength to 
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the seismic demand (Xiang et al., 2018). The weaker structure means the stronger the earthquake 

input necessitating the larger EDP or μR (Fanaie and Ezzatshoar, 2014; Siddique et al., 2014; Cai 

et al., 2016; Lu et al., 2016). In the ductility-based methods for seismic design or evaluation, one 

of the main issues is to develop an appropriate association between the structural nonlinear response 

(damage status) and the earthquake input intensity, i.e., the relationship of R-μ (Lee et al., 1999; 

Chakraborti and Gupta, 2005; Zhao and Tong, 2010; Avilés and Pérez-Rocha, 2011). 

 

Researchers have recognized that seismic ground motions nearby to an active fault could be 

extremely different than far-field (FF) ground motion records and demonstrate unusual spectral 

shape, as well as large amplitude and different energy content (Veismoradi and Darvishan, 2018). 

In near-fault (NF) zones, due to the short distance between the rupturing fault and building site, 

high-frequency damping is minimal, and thus their records include high-frequency contents 

(Stewart et al., 2002). However, the most prominent characteristics of the near-fault earthquake 

could be devoted to the predominant velocity pulse (also known as pulse-like ground motions (PL)), 

being able to emerge from either the effect of forward directivity or fling step (Veismoradi and 

Darvishan, 2018). Forward-directivity appears when the surface rupture extends toward the site, 

while the fling step is due to permanent ground displacement caused by tectonic deformation 

(Kalkan and Kunnath, 2006). Further observations revealed that the major response of structures 

owing to a near-fault earthquake with effects of fling-step (permanent displacement at the strike-

parallel direction of a strike-slip fault) was achieved at the first mode and wavelike vibrations with 

no fling-effect cause major response of structure was achieved at the structures’ higher modes 

(Kalkan & Kunnath, 2006). Under near-fault earthquakes with pulse velocities greater than 0.70s, 

(Gerami and Abdollahzadeh, 2013) studied steel moment-resisting frames and revealed that 

forward-directivity effects raised the local and global demands around 1.1-2.6 and 1.2-3.5 times, 

respectively (Gerami and Abdollahzadeh, 2013). Eskandari et al. (2017) compared the seismic 

performance of reinforced concrete steel braced frames against far-field and near-fault seismic 

records and witnessed more result dispersions of NF records for the intermediate and high-rise 

frames. Besides, Mashayekhi et al. (2019) illustrated that structures’ inter-story drift angle under 

near-fault earthquakes with the effect of forward-directivity was greater than far-fault earthquakes 

for approximately 30-50% of structure height in upper stories. 

 

On the other hand, valuable research has been recently done on the optimization and improvement 

of steel structure design relationships using an Adaptive Neuro-Fuzzy Inference System. Artificial 

neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) methods are 

developed and employed to detect damage, applying dynamic parameters of Hakim and Abdul 

Razak (2013), in a steel girder bridge model. Basarir et al. (2019) studied different modelling 

methods, including adaptive neuro-fuzzy inference system (ANFIS) and multiple regression, to 

predict the final pure bending of concrete-filled steel tubes (CFTs). They revealed that the ANFIS 

model is able to predict the final pure bending of CFT with high accuracy (Basarir et al., 2019). 

 

This article proposes an intelligence model for predicting the roof ductility of the EBFs. This model 

is presented on the basis of geometrical characteristics of EBFs and achieved according to the 

parametric investigation, such as various nonlinear time history analyses of 162 EBFs with 4 

performance levels under 20 near-fault ground motions. The considered geometrical characteristics 

include the number of stories, the stiffness of the columns, the brace slenderness, and the ratio of 

the link beam length to the total length of the beam. For this purpose, it is necessary to prepare a 

large database of studies of a considerable number of frames with an eccentrically braced frame 

system using nonlinear dynamic analysis. Therefore, a total of 12960 nonlinear analyses were 
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performed based on a platform of Incremental Dynamic Analysis (IDA) to create a database 

containing a wide range of relevant data. Then, an Adaptive Neuro-Fuzzy Inference System is 

employed to create an intelligent model for establishing the intelligence model. It may be supposed 

that the results of the suggested patterns match the exact outcomes of nonlinear time history 

analyses. The main emphasis is on introducing the potential of the proposed relationships to fit 

them into the framework of design methods based on the elastic analysis. 

 

The results are principally applied to structures under far-field earthquakes, although many studies 

have been performed to propose more applicative R-μ relationships. Results are unavailable 

concerning the R-μ relationships for structures exposed to severe NF-PL ground motions. 

Generally, the structural responses because of NF-PL are coupled with FF-induced ones, making it 

complex to create rational responses. Another highlight of this paper is the introduction of an 

intelligence model to estimate the required coefficients. To achieve this goal, an Adaptive Neuro-

Fuzzy Inference System has been utilized. 

 

2. Adaptive Neuro-Fuzzy Inference System 

The need to solve the complex, nonlinear, and variable problems grows with time. Conventional 

mathematical models perform linear and constant analysis effectively. Although techniques that 

work on a particular model are capable of analysing complex nonlinear and time-varying problems, 

they also face some limitations. Combining these with other issues like decision making has 

inspired the development of intelligent techniques, including fuzzy logic, genetic algorithms, neural 

networks, and expert systems. Intelligent systems mainly employ a combination of these techniques 

to solve very complex problems. Although fuzzy logic and artificial neural networks both have 

been very successful in solving time-varying nonlinear problems, each has its own limitations, 

reduces their use in solving many of these problems (Straccia, 2013). 

 

Determining the exact number of rules and functions of membership in fuzzy logic is extremely 

difficult and time-consuming for complex problems. Optimizing fuzzy solutions is also much more 

time-consuming and difficult. Understanding the nature of the neural networks and how they learn 

about the relationship between inputs and outputs is very complicated (Nikravesh, 2007). Neural 

network technology can be applied to learn system behaviour based on input and output data ( 

Straccia, 2013). This knowledge may be applied to create fuzzy rules and membership functions, 

thus reducing development time. Fuzzy neural systems can create fuzzy rules and membership 

functions of complex systems that fuzzy logic technology alone has problems with. The use of non-

heuristic algorithms in fuzzy neural systems increases the accuracy, performance, and reliability of 

these systems and generally reduces costs. The ability to optimize the fuzzy neural system is one 

of their key capabilities. Membership rules and functions of a fuzzy neural system can be optimized 

by applying neural network algorithms. These systems can use fuzzy rules to estimate the neural 

network weights. 

 

Neural-Fuzzy Systems was introduced first by Jang (1993). A fuzzy inference system can be 

created if there is knowledge based on linguistic-fuzzy rules. To create a fuzzy inference system 

(FIS), it is necessary to specify fuzzy sets and operators; in order to construct a neural network, the 

structure and learning algorithm must be specified. Research shows that each of these methods has 

its drawbacks. It is, therefore, natural that to enhance the level of these methods, they must be 

combined. What the FIS cannot do, is to learn; thus, the ability of learning is vital from the FIS 

point of view. Artificial neural network learning algorithms determine FIS parameters in the 

structure of a fuzzy-neural system. In a fuzzy-neural system, data-based structures participate as 
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input data. A prevalent manner to use a learning algorithm in FIS is to present the FIS system in a 

structure such as neural networks (Jang, 1993). ANFIS uses a Sugeno-type fuzzy system in the 

five-layer network (the input layer not counted by Jang), as demonstrated in Figure 1 for two inputs 

x and y and one output z. 

 

 

 
 

Figure 1. ANFIS architecture for two input data, x and y (Jang, 1993) 

 

 

In the first layer, also called the fuzzy layer, the membership degree of each linguistic variable is 

calculated. For instance, if there are only two membership functions for each of the inputs x and y, 

the output of this layer will be as Equations (1) and (2): 

 
1 ( ), 1,2,...,i AiO x i n                                                                                                                                                 (1) 

 
1 ( ), 1,2,...,i BiO y i n                                                                                                                                               (2) 

 

where x and y are the input to node i, and 𝐴𝑖 and Bi are the linguistic labels (such as "small" or 

"large") related to this node function. Put it differently, 
1

iO  denotes the membership function of Ai 

and Bi; it indicates the extent to which x satisfies the quantifier Ai and Bi. 

 

In the second layer, part (and) of the (If-Then) fuzzy system rules is considered as a product. Fuzzy 

(If-Then) rules are determined as Equation (3) in ANFIS. 

 

1,2,...,

i i

i i i i

IF x is A and y is B

THEN f p x q y r

i n

  



                                                                                                                                           (3) 

 

where n is the number of rules and parameters that are specified during the training phase. The 

output of this layer is obtained by Equation (4). 
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( ) ( ), 1,2,...,i Ai Biw x x i n                                                                                                                                (4) 

 

In the third layer, called the normalized layer, the weights calculated in the previous layer are 

normalized by Equation (5). 

 

1

, 1,2,...,i
i n

i

i

w
w i n

w


 


                                                                                                                                                (5) 

 

The fourth layer is the de-fuzzy layer. In this layer, each node affects the estimation of the system 

output by multiplying its normalized weight in the fi as illustrated in Equation (6). 

 
4 ( ), 1,2,...,i i i i i i iO w f w p x q y r i n                                                                                                            (6) 

 

where 𝑤̅𝑖 denotes layer 3 output, and pi, qi, ri indicates the parameter set. In this layer, parameters 

are referred to as consequent adjustable parameters. 

 

Finally, in the fifth layer, all the signals proposed to the layer are assembled based on Equation (7) 

and considered as the system's output manager. 

 

5

1

, 1,2,...,
n

i i i

i

O Overal output w f i n


                                                                                                        (7) 

 

3. Creating the Databank 

3.1 Design and Analysis of Non-Linear Models 
This study is based on 2-D regular frames with a constant height of 3 meters and 5 meters' bays. 

The columns are pinned connected to the base, and capable of conveying the moment forces along 

with their height. The beams are also pinned linked to the columns. Dead and live uniform loads  

 

on beams are 2500 and 1000 kg/m, respectively. Furthermore, the yield stress of steels is considered 

2400 kg/cm2. The number of stories, ns, is considered to be 3, 6, 9, 12, 15, and 20. The characteristic 

configuration of 2-D frames is illustrated in Figure 2. The basic period of the frames is calculated 

by using the relation T=0.08H0.75 and considering H as the total height of the frames (No, 2005). 

Link beams have been categorized into short, intermediate, and long length, similar to the ones 

specified in earlier studies (Rossi and Lombardo, 2007; Bosco and Rossi, 2009; Kuşyılmaz and 

Topkaya, 2013). The link behaviour is controlled by shear for values less than 1.6Mp/Vp (where 

Mp and Vp represent the plastic moments and the plastic shear strengths, respectively), while it is 

controlled by flexure for values greater than 2.6Mp/Vp. A combination of shear and flexural 

yielding occurs for link lengths between 1.6Mp/Vp and 2.6Mp/Vp, (AISC, 2010). Hence, models 

have been developed for these triple link beam length ratios (ξ =e/L), 0.2, 0.35, and 0.50. 

 

Moreover, each model has been expanded with brace slenderness, λ, in triple level. The slenderness 

of braces is obtained using Equation (8) (Karavasilis et al., 2007). 
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.

yFl

r E



                                                                                                                                                                          (8) 

 

where l represents the length of the braces, r denotes the gyration radius of the bracing section, Fy 

represents the applied yielding stress of the steel, and E denotes Young's modulus of materials. 

 

The effect of the columns' stiffness is given by a coefficient, α, as calculated by Equation (9) 

(Karavasilis et al., 2007). 

 

3 2

. .

. . .cos

c c d

d d

n I L

n A h



                                                                                                                                                         (9) 

 

where nc and nd indicate the number of columns and braces in a story, respectively. Ic represents 

the second moment of inertia of the columns, h denotes the floor height, and θ indicates the angle 

between the brace and the beam. 

 

 
 

Figure 2. Typical configuration of EBFs 

 

 

Diagonal braces, columns, and beam segments in link outside are modelled to stay basically elastic 

on the basis of capacity design concepts (Özhendekci and Özhendekci, 2008; Kuşy𝚤lmaz and 

Topkaya, 2015). Such members need, therefore, have sufficient strength to resist forces relative to 

the link expected strength, such as strain hardening (Fakhraddini et al., 2019). The braces are 

developed in order to have adequate resistance because of seismic loading equal to forces created 

by adjusted link shear strength. The beam design outside the link is like the brace. The columns are 

adapted for resisting the forces made by the adjusted shear strength of all links above the column 

level. 

 

The EBFs have been designed using LRFD method, under AISC 360-10 (AISC, 2010) using 

ETABS (2016) software (Habibullah, 2016). Accordingly, a database family of models is produced 

at 6 (ns) * 3 (α) * 3 (λ) * 3 (ξ) = 162 members. In the following, all EBFs have extended with 4 

various rotation angles of link beams values, accordance with the 4 performance levels. The first 
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performance level is related to forming the first plastic hinge in the link beam, and the rest of the 

performance levels taken from ASCE41-13 (Pekelnicky et al., 2012) corresponded to the angle of 

rotation of the link beam. Using Equation Δi=γieh/L, for the quadruple performance levels extracted 

from ASCE41-13 (Pekelnicky et al., 2012) for the different link beam lengths, the maximum 

displacement is related to the link beam rotation. Δi, γi, e, h, and L are displacement, link beam 

rotation, link beam length, story height, and brace length, respectively. Moreover, extended EBFs 

are analysed under 20 pulse-like near-fault earthquakes. For the nonlinear time history analyses, 

OpenSEES (McKenna, 2011) software has been used. 

 

The link beam inelastic response, in EBFs, has been modelled using the method suggested by Bosco 

et al. (2015). The flexural bending and shear force effect is simulated by the model on the link 

beams’ inelastic behaviour with short, intermediate, as well as long length. The link model consists 

of five elements joined in series, as illustrated in Figure 3. The middle element (EL0) has the same 

length and moment of link inertia, allowing its flexural elastic response to be reflected. In this 

simulation, two zero-length elements (EL1 and EL2) exist. The elastic and inelastic shear response 

of half a link is taken into account by EL1, while the inelastic flexural response of the ending part 

of the link is taken into account by EL2. Independent relative vertical displacements and relative 

rotations are allowed in the nodes EL1 and EL2, respectively (Bosco et al., 2015). With the help of 

elastic elements, beams, columns, braces, and beam segments outside the links are modelled to 

remain elastic basically. In the analyses, the Rayleigh damping is regarded. In order that the frame 

first to third modes are defined by an equivalent viscous damping factor of 0.05, stiffness and mass 

coefficients are determined. 

 

 

 
 

Figure 3. Modeling of the link (Bosco et al., 2015) 

 

 

3.2 Near-Fault Records 
Near-fault earthquakes are selected based on the classification presented in Baker's study (Baker, 

2007). The features of the chosen earthquakes are presented in Table 1. As a result, the final 

database will be 162 * 4 * 20 = 12960. 

 

In order to produce the expected database, 12960-time history analyses are performed based on an 

IDA analysis platform using OpenSEES (McKenna, 2011) software. In this regard, each 

accelerometer is repeatedly affected by multiplying the accelerometer in a Scale-Factor (SF) 

coefficient. Corresponded to the performance levels, the maximum inter-story drift of the frame is 

compared to the target values of ASCE41-13 (Pekelnicky et al., 2012) in each iteration. The repeat 

operation continues until the expected values are reached and then stops (Tzimas et al., 2017). The 

appropriate coefficient for different performance levels is calculated using the Bayesian method. 

This process is performed for a specific performance level based on the flowchart shown in Figure 

4 for a single earthquake (Tzimas et al., 2017). 
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Table 1. Characteristics of near-fault earthquakes applied in the study 
 

Peak Ground Acceleration, b Moment Magnitude, c Closest distance from the recording site to the ruptured area 
 

 

 
 

Figure 4. Flowchart of the change in scale factor 

Rc (km) Mwb PGAa (g) Station Name Year Earthquake Name Record No. 

7.31 6.53 0.179721 EC County Center FF 1979 Imperial Valley-06 1 

0.56 6.53 0.462394 El Centro Array #7 1979 Imperial Valley-06 2 

3.86 6.53 0.467966 El Centro Array #8 1979 Imperial Valley-06 3 

5.09 6.53 0.417229 El Centro Differential Array 1979 Imperial Valley-06 4 

0.53 6.19 0.813971 Coyote Lake Dam (SW Abut) 1984 Morgan Hill 5 

3.88 6.93 0.943935 LGPC 1989 Loma Prieta 6 

2.19 7.28 0.704174 Lucerne 1992 Landers 7 

23.62 7.28 0.235782 Yermo Fire Station 1992 Landers 8 

5.43 6.69 0.517814 Jensen Filter Plant 1994 Northridge-01 9 

5.92 6.69 0.723597 Newhall - Fire Sta 1994 Northridge-01 10 

6.50 6.69 0.869806 Rinaldi Receiving Sta 1994 Northridge-01 11 

5.35 6.69 0.594294 Sylmar - Converter Sta 1994 Northridge-01 12 

5.19 6.69 0.828472 Sylmar - Converter Sta East 1994 Northridge-01 13 

5.30 6.69 0.732606 Sylmar - Olive View Med FF 1994 Northridge-01 14 

0.96 6.90 0.854262 KJMA 1995 Kobe, Japan 15 

0.27 6.90 0.645232 Takarazuka 1995 Kobe, Japan 16 

10.92 7.51 0.241333 Gebze 1999 Kocaeli, Turkey 17 

3.78 7.62 0.286217 TCU049 1999 Chi-Chi, Taiwan 18 

5.97 7.62 0.224488 TCU053 1999 Chi-Chi, Taiwan 19 

0.32 7.62 0.564477 TCU068 1999 Chi-Chi, Taiwan 20 
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Researchers have been criticized for scaling, especially when they are above 10 or even 12 (De et 

al., 2009; Hancock, 2006), cause that the results within the range of normal earthquakes have led 

to the elimination of some of the data that claims higher than 12 from the databank. This screening 

eventually results in the use of a 9026 net databank from 12960 data. For each data, the maximum 

roof displacement, urmax, and inter-story drift, IDRmax, are calculated. 
 

3.3 Verification 
Modelling validation is one of the most important and fundamental steps in any study. This is 

especially important for analytical studies that require a large database. It is clear that if modelling 

assumptions have errors, the results applied in empirical extensions will also be inaccurate. 

Therefore, for validation, a 6-story structural model has been developed from the study of 

(Fakhraddini et al., 2019). The frame is schematically similar to that shown in Figure 2 Also, 144 

and 360in show the uniform story height and bay length, respectively. Considering L, as the length 

of the beam, three different values, 0.1, 0.3, and 0.5, have been taken as a to create three different 

link beam values. These link beam lengths have been categorized into short, intermediate, and long 

lengths, similar to ones shown in earlier studies (Bosco and Rossi, 2009; Kuşyılmaz and Topkaya, 

2013; Rossi and Lombardo, 2007). The link behaviour is controlled by shear for values less than 

1.6Mp/Vp (where Mp and Vp represent the plastic moments and the plastic shear strengths, 

respectively), while it is controlled by flexure for values greater than 2.6Mp/Vp. A combination of 

shear and flexural yielding occurs for link lengths between 1.6Mp/Vp and 2.6Mp/Vp (Committee, 

2010). All frames include three bays with simple beam-to-column connections. All beams’ uniform 

dead and live loads are 0.12 and 0.06 kips/in, respectively; all frames’ seismic floor masses are 

regarded as 206 kips. A steel grade of A992 with a yield strength of 50 ksi is applied in designing 

all structural members. The final section sizes of frames are summarized in Table 2. The EBFs 

provided in Table 2 are analysed in order to define their response to the 15 seismic excitations. The 

sections mentioned in the Table 2 are W-type for beams and columns. For this purpose, typically 

the expression 3 (38 14 14) +3 (14 × 30) means that for the three lower and upper floors, sections 

W14 × 38 and W14 × 30 have been used, respectively. HSS sections have also been used for all 

braces. For the nonlinear time history analyses, OpenSEES software is used. The link beam 

inelastic response is modelled using the method suggested by (Bosco et al., 2015). For every ground 

motion, the scale factor (SF) of the ground motion, related to Life Safe (LS) performance level, is 

defined via incremental dynamic analysis (IDA) on the basis of acceptance criteria of ASCE 41-13 

(Pekelnicky et al., 2012). As a final point, the median peak floor displacements are recorded vs the 

responses from the OpenSEES shown in Figure 5 In this study, the comparison of the diagrams 

presented attests to the adequate accuracy of the modelling phase. 

 

 
Table 2. Section sizes of the 6St-EBFs in Fakhroddini et al. (Fakhraddini et al., 2019) 

 

Brace** Gravity beams* Link beam* Middle columns* Side columns* 
Link length 

a=e/L 

5(6×1/2)+6×1/4 14×109 2(14×53)+3(14×48) 
3(14×311)+ 

3(14×132) 

3(14×38)+ 

3(14×38) 
0.1 

3(6×1/2)+3(6×1/4) 14×109 4(14×68)+2(14×48) 
3(14×311) 

+3(14×132) 

3(14×38)+ 

3(14×30) 
0.3 

4(6×1/2)+2(6×1/4) 14×109 2(14×132)+ 4(14×68) 
3(14×426)+ 

3(14×176) 

3(14×38)+ 

3(14×30) 
0.5 

 

* These sections are W-type. ** These sections are HSS-type. 
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Figure 5. Model validation in comparison with the result of Fakhroddini et al. (Fakhraddini et al., 2019) 

 

 

4. Using ANFIS to Develop the Intelligent Model 
Different parameters are selected for this study. Considering the procedure explained in the 

previous section, 12960 data are calculated and applied. The selected data are divided into two 

groups: one group, including 6769 data sets, is applied as training data to develop the model, and 

the other group, including 2257 data sets, is applied as testing data to verify the model validation. 

The training and testing data are selected randomly. Proper selection of input and output data can 

be the first and foremost step in designing intelligent and predicting systems. The input data 

consists of the number of stories, beam link length to the beam length ratio, braces slenderness, 

stiffness of columns, fundamental period of the structure, roof ductility, and behaviour factor within 

the ranges, as presented in Table 3. Figure 6 illustrates the schematic of the input and output 

parameters applied in ANFIS. 

 

 

 
 

Figure 6. Schematic of the input and output parameters of the ANFIS 
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Table 3. Range of the data applied 
 

Parameter 
Number of the data Range of data Mean data 

Training data Testing data Training data Testing data Training data Testing data 

ns 6769 2257 3-20 3-20 11.7959 11.7939 

ξ 6769 2257 0.2-0.5 0.2-0.5 0.34386 0.34381 

λ 6769 2257 0.22135-0.82729 0.22135-0.82729 0.39832 0.39835 

α 6769 2257 0.00362-0.06122 0.00362-0.06122 0.01540 0.01540 

Tp 6769 2257 0.952-12.845 0.952-12.845 5.06167 5.0688 

μR 6769 2257 0.35908-11.9994 0.46211-11.9818 3.81001 3.76826 

q 6769 2257 1-11.956 1-11.979 2.52357 2.52901 

 

 

In order to find a proper association between these parameters for EDP prediction, several cases 

have been examined by previous researchers ( Karavasilis et al., 2007; Karavasilis et al., 2008). 

After several regressive examinations, they have established a powerful association between the 

independent parameters, a number of stories (ns), braces slenderness (λ), stiffness of columns (α), 

a basic period of structure (Tp), as well as roof ductility (μR) and (q) for CBF1 steel frames under 

regular earthquakes as presented in Equations (10) and (11). 
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11 .( 1) . ( , , , )p

R s

p

T
q p f n

T
                                                                                                                          (10) 
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11 .( 1) . ( , , )p

R l s

p

T
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T
                                                                                                                             (11) 

 

In order to account for the effect of link beam length, ξ is considered as an extra parameter to the 

function. Moreover, owing to the properties of near-fault earthquakes, parameter T/Tp, change to 

Tp. Therefore, the basic platform of the equation will change to the Equations (12) and (13). In 

other words: 

 
2

11 .( 1) . ( , , , , )
p

R s pq p f n T                                                                                                                       (12) 

 
2

11 .( 1) . ( , , )
p

R l s pp f n T                                                                                                                              (13) 

 

To be more exact, Equations (12) and (13) could be rewritten as Equations (14) and (15), 

respectively. According to Equations (14) and (15), the model inputs are determined as Figure 6. 
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1. Centrally braced frame 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 6, 1516-1537, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.112 

1527 

The roof ductility, R , is achieved by dividing the inelastic roof displacement, Δi, by the yielding 

displacement, Δy, obtained by nonlinear time history and pushover analysis, respectively. 

Moreover, link , which indicates the ductility of link beams, is calculated by Equation (16). 

 

max
link

y





                                                                                                                                                                             (16) 

 

where 
max  and 

y  are the maximum inelastic rotation and the yielding rotation of the link beam, 

respectively. On the other hand, in EBFs, 
max  is linked to 

maxIDR  using Equation (17). 
y  is 

also obtained from the acceptable limits of the ASCE41-13 code, depending on the dependent 

performance level. 

 

max
maxIDR L

e h






                                                                                                                                                            (17) 

 

In Equation (17), e is the length of the link beam, L is the length of the brace, and h is the height of 

the floor. 

 

To generate the structure of the Fuzzy Inference System (FIS), two different methods, including 

"Subtractive clustering" and "Fuzzy C-Means clustering (FCM)," are evaluated for (μR) prediction. 

Properties and parameter values of the constructed model are listed in Table 4, separated by the FIS 

type. 

 

 
Table 4. Properties and parameter values of the constructed model 

 

Properties Value/Type 

Subtractive clustering  

Cluster radius 0.75 

Input membership function type gaussmf 

Output membership function type Linear 

Fuzzy C-Means clustering (FCM)  

Cluster numbers 5 

Input membership function type gaussmf 

Output membership function type Linear 

FIS type Sugeno 

Partition matrix exponent 2 

Maximum number of iterations 1000 

Minimum improvement 10-5 

 

 

The structure of the FIS model depends on the type of producer function. Table 5 summarizes the 

properties of different FIS types. Figures 7 to 8 illustrate the structure of the interface model created 

based on the FIS function (Subtractive clustering/FCM). Besides, in Table 6, the fuzzy operators 

applied according to different methods of generating a FIS are listed. Figure 9 illustrates the 

membership functions of the various inputs associated with the models created. 
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Table 5. Properties of different FIS types 
 

FIS type Property 

FCM Subtractive clustering  

79 149 Number of nodes 

35 70 Number of linear parameters 

60 120 Number of nonlinear parameters 

95 190 Total number of parameters 

6769 6769 Number of training data pairs 

2257 2257 Number of testing data pairs 

5 10 Number of fuzzy rules 

 

 

 
 

Figure 7. ANFIS structure for formulating input data using subtractive clustering method 

 

 

 

 
 

Figure 8. ANFIS structure for formulating input data using the FCM method 

 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 6, 1516-1537, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.112 

1529 

Table 6. Parameters of the constructed model based on FIS 
 

FIS type Inference type 

FCM Subtractive clustering  

Prod Prod AND 

Prober Prober OR 

Prod Prod Implication 

Max Max Aggregation 

Wtaver Wtaver Defuzzification 

 

 

 
 

Figure 9. Comparison between the real and predicted value of (μR) in training data (Subtractive clustering 

method) 

 

 

 
 

Figure 10. Comparison between the real and predicted value of (μR) in training data (FCM method) 
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The comparisons between real and predicted values of (μR) are illustrated in Figures 9 and 10 for 

training data of Subtracting clustering and FCM methods. Based on the results, in both models, 

there is a good agreement between the model data and the real values in the training data. However, 

there is greater consistency in the model built on FCM. In these figures, the horizontal axis 

represents the number of data used and the vertical axis represents the values of each data. 

 

In order to evaluate the model's efficiency and accuracy, various error criteria, including Error, 

Mean Error, Root Mean Square Error (RMSE), percentage of Mean Absolute Relative Error 

(MARE), and Correlation coefficient (R), are applied between model and real values. Equations 

(18) to (21) are applied to calculate each of the criteria, as mentioned earlier. The results of the 

calculation of these criteria are presented in Table 7 for the training data. The correlation 

comparison between real and predicted values are illustrated in Figures 11 and 12 for different 

types of FIS, considering the training data. 

 

real ANFIS results
Error q q                                                                                                                                              (18) 

 

Error
Mean Error

N
                                                                                                                                                      (19) 

 

2Error
RMSE

N

                                                                                                                                                   (20) 

 

Error
Error

N

                                                                                                                                                              (21) 

 

where N is the number of datasets in the above relationships. As can be seen from Table 7. The 

model developed based on the Subtractive method provides more accurate results for predicting 

the behaviour factor in the range of training applied data. 

 

 

 

 
Table 7. Results of evaluating different ANFIS models for training data 

 

FIS generation method RMSE Mean Error Mean Absolute Relative Error Correlation Coefficient(R) 

Subtractive method 2.178 -6.28E-08 0.3243 0.882 

FCM 2.282 -7.57E-09 0.3255 0.876 
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Figure 11. Correlation between the real and predicted values in training data (Subtractive clustering 

method) 

 

 

 
 

Figure 12. Correlation between the real and predicted values in training data (FCM method) 

 

 

5. Model Validation 
In order to validate and test the created models, test data consisting of 2257 categories, which make 

up about 25% of the total data, are applied. The results of the different models are illustrated in 

Figures 13 and 14 for the testing data. As can be observed, there is more agreement between the 

predicted data (model results), and the real values in the model developed based on the FCM 

method. 
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Figure 13. Comparison between the real and predicted value of (μR) in testing data (Subtractive clustering 

method) 

 

 

 

 
 

Figure 14. Comparison between the real and predicted value of (μR) in testing data (FCM method) 

 

 

To evaluate the model's efficiency and accuracy, various error criteria, including Error, Mean Error, 

RMSE, MARE%, and R, are applied between model and real values in the testing data. The results 

are presented in Table 8. It is again observed that the model created by FCM is more accurate than 

the model created based on Subtractive clustering. 
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Table 8. Results of evaluating different ANFIS models for testing data 
 

FIS generation method RMSE Mean Error Mean Absolute Relative Error Correlation Coefficient(R) 

Subtractive clustering 2.145 -4.60E-02 0.3289 0.888 

FCM 2.197 7.71E-03 0.3215 0.885 

 

 

 
 

Figure 15. Correlation between the real and predicted values in training data (Subtractive clustering 

method) 

 

 

 
 

Figure 16. Correlation between the real and predicted values in training data (FCM method) 
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The correlation between the results of different models and the real values are illustrated in Figures 

15 and 16 for the testing data. Results show a higher correlation between the model results and the 

real values in the model created using the Subtractive method. Furthermore, the Error parameters 

in Table 8 show that the error generated by the model based on using the Subtractive method is less 

than the other models. Besides, the error range of the model mentioned above is lower than the 

others. 
 

6. Conclusion 
To sum, after studying a considerable number of EBF frames, nonlinear dynamic analysis of a large 

database was prepared. Out of 12960 data, 9027 data were applied to predict the neuro-fuzzy 

inference algorithm in the ANFIS system. Other data were eliminated based on factors, such as 

mathematical instabilities of nonlinear models, by performing a complex process. The main 

emphasis was on introducing the capability of the proposed model to fit into the framework of 

design methods based on a simple elastic analysis. An intelligent model was presented to estimate 

the global roof ductility (μR) for EBF steel frames under near-fault earthquakes. The produced 

intelligent model was a nonlinear function of the number of stories, brace slenderness, column 

stiffness, a basic period of the structure, link beam length to the total length of the beam ratio, 

design performance level, and behaviour factor of the structure. In order to create the best and most 

accurate model, Subtractive clustering and Fuzzy C-Mean clustering methods (FCM) were applied. 

Based on the results, the model developed by Subtractive clustering yielded more accurate 

outcomes than the models developed by the FCM method. The proposed model is an intelligent 

model in the range of data applied and can be applied to estimate the global roof ductility of EBFs. 

To evaluate the efficiency and performance of the model, both the correlation coefficient and 

common error calculation criteria, including RMSE and MARE, were applied. The correlation 

coefficient for the Subtractive clustering method was 0.888 based on the intelligent model in the 

testing data. On the other hand, the developed intelligent model can be applied as a precise 

alternative to predict (μR) for EBFs under near-earthquakes. From the results of this study, it can be 

pointed out that the developed intelligent model can be applied as an accurate substitute method to 

predict (μR) for EBF structures under near-fault earthquakes. 
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