
1 23

Journal of Electrical Engineering &
Technology
 
ISSN 1975-0102
 
J. Electr. Eng. Technol.
DOI 10.1007/s42835-019-00135-8

Short Term Load Forecasting Model Based
on Kernel-Support Vector Regression with
Social Spider Optimization Algorithm

Alireza Sina & Damanjeet Kaur



1 23

Your article is protected by copyright and

all rights are held exclusively by The Korean

Institute of Electrical Engineers. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Vol.:(0123456789)1 3

Journal of Electrical Engineering & Technology 
https://doi.org/10.1007/s42835-019-00135-8

ORIGINAL ARTICLE

Short Term Load Forecasting Model Based on Kernel‑Support Vector 
Regression with Social Spider Optimization Algorithm

Alireza Sina1 · Damanjeet Kaur2

Received: 19 March 2018 / Revised: 1 December 2018 / Accepted: 29 January 2019 
© The Korean Institute of Electrical Engineers 2019

Abstract
Short-term load forecasting in power system is an important factor planning and electricity marketing. Due to the uncertainty 
of the load demand, many studies have been devised for nonlinear prediction methods. In this paper, a hybrid approach con-
sisting of support vector regression (SVR) and social spider optimization (SSO) is proposed for short term load forecasting. 
The SVR technique has proven to be useful in nonlinear forecasting problems. To improve accuracy of SVR parameters 
are tuned using SSO. The SSO algorithm is based on the simulation of cooperative behavior of social-spiders and helps in 
achieving good results.

Keywords Short term load forecasting · Kernel · Support vector regression · Social spider optimization · EUNITE and New 
England network

1 Introduction

Short-term load forecasting is one of the most important 
issues in deregulated power system operation and planning. 
Many operational decisions in deregulated power systems 
all around the world, such as unit commitment, automatic 
generation control and maintenance scheduling, depend on 
the future behavior of demand loads [1].

In recent years, power system privatization and deregu-
lation, made it necessary to accurately predict STLF [2]. 
During the previous decades, a wide variety of techniques 
have been used for the problem of STLF [3]. In recent dec-
ade, many machine learning techniques have been devel-
oped, such as the support vector machines (SVMs) [4]. 
SVM have been used for load prediction and electricity price 
forecasting.

This method has good performance in prediction. After-
wards SVMs have been developed for regression purposes 
also. SVR technique is a powerful machine learning, which 
is based on statistical learning theory and established on 
the structural risk minimization (SRM) principle. SVR is 
suitable for prediction because it has a simple structure and 
need least data base [5]. To get a proper result in SVR, one 
has to optimize its parameters. Various methods has been 
proposed to optimize these parameters by researchers, like 
firefly algorithm [6].

During the past decade, many solutions constrained 
optimization problems using genetic algorithm, ant colony 
algorithm, particular swarm optimization algorithms have 
received considerable attention among researchers. Social 
spider optimization is a new method to find extremum points 
[11–15]. The SSO algorithm is a new bio-inspired optimiza-
tion algorithm based on the simulation of the cooperative 
behavior of social spiders.

This algorithm considers two different search spiders, 
males and females. Depending on gender, they have differ-
ent behavior which can find themselves in the colony based 
on the biological laws. In SSO approaching obtain optimum 
results in minimum time used two different orders.

In this paper, SSO for SVR parameters tuning is introduced. 
The remainder of this paper is as follows. Section 2 present the 
SVR, kernel functions theory and some background regarding 
SSO, as well as Sect. 3 explains the solving method. Section 4 
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discusses about results of testing two standard data set in 
SSO–SVR and Sect. 5 states conclusions.

2  Problem Formulation

2.1  The SVR‑Based STLF Method

Support vector regression (SVR) for prediction has been popu-
lar in the past decade. Many works have addressed this issue 
but sometimes the SVR formula needed to be modified [16]. 
This paper presents a rather simple and direct approach to con-
struct such intervals. It is assumed that the climatic conditions 
and historical load and calendar date of the target value depend 
on its input only through the predicted value and can propose 
this distribution by simple functions via SVR to the model.

2.2  Basic Principles of SVR Overview

The regression problem can be stated as:
Given a training data set D =

{
(yi, ti)|i = 1, 2, ..., n

}
 , of 

input vectors yi and associated targets ti , the goal is to fit a 
function g(y) which approximates the relation inherited 
between the data set points and it can be used later on to infer 
the output t for a new input data point y. Any practical regres-
sion algorithm has a loss function L(t;g(y)) , which describes 
how the estimated function deviated from the true one. In this 
paper, Vapnik’s loss function is used, which is known as ε 
insensitive loss function and defined as:Hence the formulation 

Figure 1 depicts the situation graphically. The following 
discussion begins by describing the case of linear functions 
g , taking the form:

where w ∈ Y , Y  is the input space, b ∈ R and w.y is the dot 
product of the vectors w and y.

The goal of a regression algorithm is to fit a flat function to 
the data points. Flatness in the case of Eq. (2) means that one 
seeks a small w . One way to ensure this flatness is to minimize 

(1)L(t;g(y)) =

{
0 if |t − g(y)| ≤ �

|t − g(y)| − � otherwise

(2)f (y) = w.y + b

the norm, i.e. w2 . Thus, the regression problem can be written 
as a convex optimization problem:

Hence the formulation stated in (4) is attained:

The constant C ≥ 0 determines the trade-off between the 
flatness of g and the amount up to which deviations larger 
than � are tolerated. This corresponds to the so called � insen-
sitive loss function which was described before. It turns out 
that in most cases the optimization problem Eq. (6) can be 
solved more easily in its dual formulation. The minimization 
problem in Eq. (6) is called the primal objective function. The 
key idea of the dual problem is to construct a Lagrange func-
tion from the primal objective function and the corresponding 
constraints, by introducing a dual set of variables.

Here L is the Lagrangian and ∝i,∝
∗
i
, �i and �

∗
i
 are Lagrange 

multipliers. Hence the dual variables in Eq. (7) have to satisfy 
positivity constraints:

It follows from the saddle point condition that the par-
tial derivatives of L with respect to the primal variables (
w, b, �i, �

∗
i

)
 have to vanish for optimality:

(3)minimize
1

2
w2

(4)Subject to

{
ti − (w.y + b) ≤ �

(w.y + b) − ti ≤ �

(5)minimize
1

2
w2 + C

n∑
i=1

(
�i + �∗

i

)

(6)Subject to

⎧
⎪⎨⎪⎩

ti − (w.y + b) ≤ � + �i
(w.y + b) − ti ≤ � + �∗

i

�i, �
∗
i
≥ 0

.

(7)

L =
1

2
w2 + C

n∑
i=1

(�i + �∗
i
)

−

n∑
i=1

(
�i�i + �∗

i
�∗
i

)

−

n∑
i=1

∝i

(
� + �i − ti + (w.y + b)

)

−

n∑
i=1

∝∗

i

(
� + �∗

i
+ ti + (w.y + b)

)
.

(8)∝i,∝
∗

i
, �i, �

∗

i
≥ 0

Fig. 1  Margin loss setting for a linear SVM
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Substituting from Eq. (9) into Eq. (7) yields the dual opti-
mization problem:

In deriving Eq. (10) can be reformulated as �(∗)
i

= C− ∝∗
i
 . 

Equation (9) can be rewritten as follows:

The Karush–Kuhn–Tucker (KKT) conditions are the basics 
for the Lagrangian solution. These conditions state that at the 
solution point, the product between dual variables and con-
straints has to be vanished [17, 18].

There are many ways to compute the value of b in Eq. (11). 
One of such ways can be found in [19]:

where yr and ys are the support vectors.

2.3  Kernel Trick

The next step is to make the SVM algorithm nonlinear. This, 
for instance, could be achieved by simply preprocessing the 

(9)

�L

�b
=

n∑
i=1

(∝∗

i
− ∝i) = 0,

�L

�w

=

n∑
i=1

(∝∗

i
− ∝i)yi = 0,

�L

��
(∗)

i

= C− ∝
(∗)

i
−�

(∗)

i
= 0.

(10)

minimize −
1

2

n∑
i,j=1

(
∝i − ∝∗

i

)(
∝j − ∝∗

j

)(
yi.yj

)
− �

n∑
i=1

(
∝i + ∝∗

i

)

+

n∑
i=1

yi
(
∝i − ∝∗

i

)

Subject to

n∑
i=1

(
∝i − ∝∗

i

)
= 0 and ∝i,∝

∗

i
∈ [0,C].

(11)

w =

n∑
i=1

(∝i − ∝∗

i
) thusyi ∶ g(y)

=

n∑
i=1

(∝i − ∝∗

i
)(yi.y) + b.

(12)
∝i

(
� + �i − ti + w.yi + b

)
= 0

∝∗

i

(
� + �i + ti − w.yi − b

)
= 0,

(13)

(
C− ∝i

)
�i = 0(

C− ∝∗

i

)
�∗
i
= 0.

(14)b = −
1

2

(
w.
(
yr + ys

))

training patterns yi by a map � ∶ Y → F into some feature 
space F, as described in [20], and then applying the standard 
SVM regression algorithm. Here is a brief look at an example 
given in [21].

Likewise the expansion of g in Eq. (13) may be written as:

An important note here is that in the nonlinear setting, the 
optimization problem corresponds to finding the flattest func-
tion in feature space, not in input space. The details of the 
conditions for admissible SVM kernel functions can be found 
in [22]. In this study, we used a radial basis kernel, because this 
represented choice has a good performance [23, 24].

2.4  Social Spider Optimization

Social spider algorithm (SSA) proposed by James and Li [25] 
to solve optimization problem. Actually SSO is a swarm intel-
ligence algorithm, according to behavior of the social spiders 
for optimization tasks. To SSO technique, the following steps 
need to be performed [10]:

Step 1: Set the total number of n-dimensional colony members 
as N and define the number of male Nmale and female Nfe-
male spiders in the entire colony S as given below.

where rand stands for a random number which falls within 
the range of [0,1] and floor(.) indicates the mapping between 
a real and an integer numbers.

Step 2: Initialize stochastically the female and male members 
and compute the mating radius according to Eq. (18).

(15)

minimize −
1

2

n∑
i,j=1

(
∝i − ∝∗

i

)(
∝j − ∝∗

j

)
K
(
yi.yj

)

− �

n∑
i=1

(
∝i + ∝∗

i

)
+

n∑
i=1

yi
(
∝i − ∝∗

i

)
,

(16)Subject to

n∑
i=1

(
∝i − ∝∗

i

)
= 0 and ∝i,∝

∗

i
∈ [0,C]

(17)

w =

n∑
i=1

(∝i − ∝∗

i
)K(yi) thus ∶ g(y)

=

n∑
i=1

(∝i − ∝∗

i
)K(yi.y) + b.

(18)
Nmale = N − Nfemale

Nfemale = floor[(0.9 − rand ∗ 0.25)N],

(19)r =

∑n

j=1
(p

high

j
− plow

j
)

2n
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for (i=1;i< +1;i++)
for (j=1;j<n+1’j++)

end
end
for (k=1;k< +1;k++)

for (j=1;n+1;j++)

end
end

Once the new spider is formed, it is compared to the worst 
spider of the colony. If the new spider is better, the worst spider 
is replaced by the new one. Where fij is the jth parameter of 
the ith female spider position.

Step 3: Calculate the weight of each spider in colony S through 
Eq. (19).

for (i=1;i<N+1;i++)
calculate 

end 
 

where J(Si) denotes the fitness value acquired through the 
evaluation of the spider position Si with regard to the objective 
function J(.).

Step 4: Move female spiders according to the female coopera-
tive operation modeled as Eq. (20). Since the final movement of 
attraction or repulsion depends on several random phenomena, 
the selection is modeled as a stochastic decision. For this opera-
tion, a uniform random number rm is generated within the range 
[0, 1]. If rm is smaller than a threshold PF, an attraction movement 
is generated; otherwise, a repulsion movement is produced.

where �, � and � and rand are random numbers which fall 
within the range of [0, 1].

(20)wi =
J(Si) − worstS

bestS − worstS

(21)f k+1
i

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f k
i
+ �Vibci

�
Sc − f k

i

�
+ �Vibbi�

Sb − f k
i

�
+ �(rand − 0.5)

with probability PF

f k
i
− �Vibci

�
Sc − f k

i

�
− �Vibbi�

Sb − f k
i

�
+ �(rand − 0.5)

with probability 1 − PF

Step 5: Similarly moving male spiders according to the male 
cooperative operator expressed as Eq. (21).

for (i=1;i< +1;i++)

calculate 

if ( ) 

else if

end 
end

where Sf  indicates the nearest female spider to the male 
individual.

Step 6: Perform the mating operation. Mating in a social-spi-
der colony is performed by dominant males and the female 
members. In the mating process, the weight of each involved 
spider defines the probability of influence to each individual 
into the new brood. The spiders holding a heavier weight are 
more likely to influence the new product, while elements 
with lighter weight have a lower probability.

Step 7: Check whether the stopping criterion is satisfied. If 
yes, the algorithm terminates; otherwise, return to Step 3.

Different to other evolutionary algorithms, in SSOA, 
each individual spider is modelled by taking its gender 
into account, which allows incorporating computational 
mechanisms to avoid critical flaws and incorrect explora-
tion exploitation trade-off. In order to show how the SSOA 
performs [26].

2.5  Results Evaluation

To provide a comparison with the prior prediction ability 
of SVR models in the “Worldwide Competition within the 
EUNITE Network”, this work evaluated the SSO–SVR 
model according to the same criteria employed in the above 
mentioned competition [26].

1. Mean absolute percentage error (MAPE):

(22)mk+1
i

=

⎧
⎪⎪⎨⎪⎪⎩

mk
i
+ 𝛼Vibfi

�
Sf − mk

i

�
+ 𝛿(rand − 0.5)

if WNfemale
+ i > WNfemale

+ m

mk
i
+ 𝛼

�∑Nmale
h=1

mk
h
WNfemale

+h

∑Nmale
h=1

WNfemale
+h

− mk
i

�

if WNfemale
+ i ≤ WNfemale

+ m

(23)MAPE =

∑n

i=1

���
yRi−yPi

yRi

���
n

for (i=1;i< +1;i++)
Calculate and

if ( < PF)

else if

end
end
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2. Maximum error (ME):

3. Root mean square error (RMSE):

where yRi denotes the real value of the test day electrical 
load and ‘‘i” is hours of day (o till 23) and yPi represents the 
predicted test day electrical load of Jun. 1997 in EUNITE 
Network and n is 24 (Hours a day).

3  Solution Approach

In this paper, a SSO–SVR approach for short term load 
forecasting is proposed. In this approach, initially SSO is 
implemented to find optimal SVR parameters ( C, � and � ), 
then SVR with optimal parameters is implemented and 
obtained 1 week next load, in here has time, climate, cal-
endar days and previous month load as inputs.

The proposed approach is tested on standard data set of 
EUNITE network (January and February in 1997) of Bra-
tislava city from Slovakia countries. The data sets consists 
of information of date, working days, holidays and hourly 
information of time, temperature, humidity, wind speed, 
wind chill, dew point and load demand.

SSO–SVR is implemented to forecast weekday/week-
end load while each day load is predicted for 1 h to 24 h 
with an interval of 1 h the algorithm of the given approach 
is as shown with the help of flowchart in Fig. 2. The data-
set is composed of two sections. In each case 70% of data 
is selected as the training system uses initial values for 
the parameters. These values usually result unacceptable 
forecasting error rates.

To optimize SVR parameters, the SSO algorithm is 
applied to the SVR system and will continue running until 
the MAPE error is below 1.5%.

4  Results and Discusses

In this section proposed approach is tested on EUNITE 
network (January–February in 1997) to check the per-
formance of suggested approach. For training of SVR in 
EUNITE network time period from 1st January 1997 to 
26 January in 1997 is considered. The remaining data is 
considered same for testing of SVR in dataset.

(24)ME = Max||yRi − yPi
||

(25)RMSE =

�∑n

i=1
(yRi − yPi)

2

n

4.1  EUNITE network (January–February in 1997)

The proposed approach is tested on EUNITE network 
dataset. The relationship between load and temperature, 
humidity, wind chill and wind speed etc. are as shown in 
Fig. 3, respectively.

4.2  Training of SVR

As mentioned earlier in Sect. 4 the training of SVR is done 
for load demand from 1st of January 1997 to 26 of January 
in 1997 considering various weather condition viz, tem-
perature, humidity, wind chill, dep point, working day, etc.

4.3  Testing of SVR

The trained SVR model after obtain optimize parameters 
viz SSO is tested for 1 week from 27th January 1997 to 2nd 
February 1997. The results obtained using SSO–SVR for 
1 week (27th January to 2nd February 1997) interval 1 h are 
shown in Fig. 4 below. On testing the results of 27th Janu-
ary 1997for 24 h for 1 h interval are tabulated in Table 1. 
The actual load and forecasted load using SSO–SVR are 
tabulated in 2nd and 3rd column of Table 1, respectively. 
The Maximum Error, Root Mean Square and Mean Absolute 

Tuning of SVR 
parameters

Start

Dataset

SVRData Training

Calculate Load Forecasting and 
Error

SSO

Save the high-level estimated Parameters and Load 
Forecasting

No

Yes

If SVR 
parameters is 

best?

Training

Fig. 2  Flowchart of SSO–SVR
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Percentage Error for the same are calculated for each hour as 
shown in 4th, 5th and 6th columns of Table 1. The average 
MAPE for the given day is 0.014693777.

ME, RMSE and MAPE results obtained using SSO–SVR 
for 1 week aretabulated in Table 2. The effectiveness and 
applicability of proposed approach is tested by predicting 
load for 1 week (27th January 1997 to 2nd February 1997), 
weekdays and weekends also.

The results obtained using SSO–SVR for 1 week interval 
1 h are shown in Fig. 4.

Figure  5 shows the comparison between actual load 
and predicted load for workday (27/01/1997) and weekend 
(02/02/1997). In this figure MAPE of holiday is more than 
working day, because SVR system has been more data for 
training in working days, which results better accuracy.

The MAPE obtained using proposed approach is com-
pared with existing SVR, SVR and Fuzzy, SVR-Firefly, 
PSO-SVR and ANN + ANFIS based techniques as shown 
in Table 3.

4.4  Comparison with Other Existing Techniques

It is clear from the above discussion than load forecasting 
using SSO–SVR has less error as compared to SVR and 
other existing techniques. It is also clear that the suggested 
SSO–SVR is suitable for prediction of load under various 
weather conditions and load conditions for weekdays, week-
end and all other calendar days with accuracy.

To check the accuracy of proposed approach, it is imple-
mented on New England Network (2012) dataset. The pro-
posed approach is tested on predicting load for 24 h, a week, 
weekdays and weekends. As explained in earlier data set, 
the similar steps are taken for SSO–SVR parameters tuning, 
training and testing. Table 4 shows the load forecasting for 
New England network using SSO–SVR for 24 h.

Table 5 shows the comparison of the error rate of differ-
ent days of the week.

Fig. 3  Relationship between load with temperature, humidity, wind 
speed and wind chill for EUNITE dataset

Fig. 4  Predicting load by SSO–SVR for 1 week (27th January to 2th 
February 1997) in EUNITE

Author's personal copy



Journal of Electrical Engineering & Technology 

1 3

On comparison it is found that the suggested approach 
yields minimum error of 0.19326.5.

The relationship between load and temperature, humid-
ity, wind chill and wind speed etc. are as shown in Fig. 6, 
respectively.

Table 6 shows a 1 week load forecasting for New England 
network using SSO–SVR in comparison with PSO + SVR 
[29], ANN + Fuzzy [30] and PSO + SVM [31] methods.

The effectiveness and applicability of proposed approach 
is tested by predicting load for 1 week (27th January 2012 
to 2nd February 2012), week days and weekends also. The 
results obtained using SSO–SVR for 1 week interval 1 h are 
shown in Fig. 7.

Table 1  Load forecasting for 
EUNITE network using SSO–
SVR for 24 h

Hours Actual
load

Load 
forecast
(SSO–SVR)

ME SSO–SVR RMSE SSO–SVR MAPE SSO–SVR

0 707 716.1265 9.1265 9.1265 0.0129
1 688 697.7246 9.7246 9.7246 0.0141
2 690 701.1841 11.1841 11.1841 0.0162
3 663 672.8451 9.8451 9.8451 0.0148
4 656 665.2145 9.2145 9.2145 0.0140
5 683 693.5421 10.5421 10.5421 0.0154
6 707 716.6254 9.6254 9.6254 0.0136
7 760 749.3352 10.6647 10.6647 0.0140
8 757 746.8754 10.1245 10.1245 0.0133
9 744 732.5452 11.4547 11.4547 0.0153
10 743 731.0025 11.9974 11.9974 0.0161
11 766 755.6231 10.3768 10.3768 0.0135
12 746 735.2210 10.7789 10.7789 0.0144
13 767 755.2215 11.7784 11.7784 0.0153
14 750 738.8924 11.1075 11.1075 0.0148
15 740 728.9843 11.0156 11.0156 0.0148
16 727 717.2100 9.7899 9.7899 0.0134
17 761 749.6525 11.3474 11.3474 0.0149
18 787 775.9055 11.0945 11.0945 0.0140
19 788 777.5542 10.4457 10.4457 0.0132
20 779 767.8521 11.1478 11.1478 0.0143
21 763 752.9856 10.0143 10.0143 0.0131
22 703 715.2001 12.2001 12.2001 0.0173
23 698 711.2154 13.2154 13.2154 0.0189
– – – 13.2154 10.7860 0.0146

Table 2  Comparison of the error rates in a week

Days Date ME SSO–SVR RMSE SSO–
SVR

MAPE
SVR

Monday 27/01/1997 13.2154 10.7860 0.0146
Tuesday 28/01/1997 13.7430 11.2856 0.0145
Wednesday 29/01/1997 12.6749 10.9772 0.0147
Thursday 30/01/1997 12.7754 10.8034 0.0146
Friday 31/01/1997 12.1148 11.0497 0.0148
Saturday 01/02/1997 11.9521 10.6736 0.0153
Sunday 02/02/1997 11.7760 10.5417 0.0158
Ave. – 12.6073 10.8738 0.0149

Fig. 5  Comparison between actual load and prediction load for work-
ing day and weekend
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Figure 8 shows the comparison between actual load and 
predicted load for work day (27/01/2012) and weekend 
(02/02/2012) for New England dataset.

5  Conclusion

In this paper, a new method of STLF based on SVR 
and social spider optimization technique (SSO) is pre-
sented which has lowest error and highest accuracy. The 

suggested method has been tested on EUNITE standard 
network in January and February 1997 and New England 
standard network in January and February 2012. The load 
is predicted for a day-ahead with 1-h interval, 1 week, 
week day and weekend also. The major significance of 

Table 3  1 week load forecasting 
for EUNITE network using 
SSO–SVR

Technique MAPE (%) 
EUNITE

ANN + ANFIS [8] 2.796
SVR + Fuzzy [27] 2.13
Firefly + SVR [6] 1.6909
SVR [6, 8] 1.69
PSO-SVR [28] 1.58
SVM + RFR [31] 2.12
Proposed method 1.4693

Table 4  Load forecasting for 
New England network using 
SSO–SVR for 24 h

Hours Actual
load

Load 
forecast
(SSO–SVR)

ME SSO–SVR RMSE SSO–SVR MAPE SSO–SVR

0 10.9 11.009562 0.10956 0.10956 0.01005
1 10.5 10.638951 0.13895 0.13895 0.01323
2 10.5 10.638951 0.13895 0.13895 0.01323
3 10.4 10.530261 0.13026 0.13026 0.01253
4 10.4 10.530261 0.13026 0.13026 0.01253
5 11.4 11.520125 0.12013 0.12013 0.01054
6 13.8 13.925642 0.12564 0.12564 0.0091
7 14.8 14.692598 0.1074 0.1074 0.00726
8 15 14.901325 0.09868 0.09868 0.00658
9 15.1 14.978516 0.12148 0.12148 0.00805
10 15.2 15.083261 0.11674 0.11674 0.00768
11 15.2 15.072564 0.12744 0.12744 0.00838
12 15 14.952654 0.04735 0.04735 0.00316
13 14.8 14.688104 0.1119 0.1119 0.00756
14 14.5 14.586251 0.08625 0.08625 0.00595
15 14.6 14.5956926 0.00431 0.00431 0.0003
16 15.3 15.182456 0.11754 0.11754 0.00768
17 16.5 16.380264 0.11974 0.11974 0.00726
18 16.1 15.960254 0.13975 0.13975 0.00868
19 15.6 15.4836241 0.11638 0.11638 0.00746
20 15 14.8854303 0.11457 0.11457 0.00764
21 10.9 11.009562 0.12261 0.12261 0.00863
22 10.5 10.638951 0.14202 0.14202 0.01084
23 10.5 10.638951 0.14295 0.14295 0.01201
– – – 0.14295 0.11379 0.0086

Table 5  The comparison of the error rate of different days of the 
week

Days Date ME
SSO–SVR

RMSE SSO–
SVR

MAPE
SSO–SVR

Friday 27.01.2012 0.14295 0.11379 0.0086
Saturday 28.01.2012 0.18491 0.1375 0.01081
Sunday 29.01.2012 0.19326 0.14882 0.01212
Monday 30.01.2012 0.18217 0.14018 0.01002
Tuesday 31.01.2012 0.13546 0.0618 0.00466
Wednesday 01.02.2012 0.10176 0.03829 0.00296
Thursday 02.02.2012 0.10452 0.03881 0.00306
Ave. – 0.19326 0.09703 0.00746
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this paper is that a new approach to forecast the daily load 
demand in a short period of time i.e. hourly load demand. 
The key feature of the proposed approach is the develop-
ment of SVR approach to solve load forecasting problems. 
The results for the EUNITE database show that average 
value of MAPE of 27 Jan. till 2 Feb. 1997 is 1.4954643%. 
The results for the New England database show that aver-
age value of MAPE of 27 Jan. till 2 Feb. 2012 is 0.746%. 

The comparison between obtained results with other 
method demonstrates that the proposed approach can 
decrease error and increase accuracy of STLF.

Fig. 6  Relationship between load with temperature, humidity, wind 
speed and wind chill for New England dataset

Table 6  1 week load forecasting for NEW ENGLAND network using 
SSO–SVR

Technique MAPE (%)

PSO + SVR [29] 1.72
ANN + Fuzzy [30] Weekdays-1.641

Holiday-2.796
PSO + SVM [28] Working -1.9

Weekend-1.58
Proposed method Working-0.86

Weekend-1.21

Fig. 7  Predicting load by SSO–SVR for 1 week (27th January to 2th 
February 2012) in New England

Fig. 8  Comparison between actual load and prediction load for work-
ing day and weekend
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