
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tijr20

IETE Journal of Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tijr20

An Accurate Hybrid Approach for Electric Short-
Term Load Forecasting

Alireza Sina & Damanjeet Kaur

To cite this article: Alireza Sina & Damanjeet Kaur (2021): An Accurate Hybrid
Approach for Electric Short-Term Load Forecasting, IETE Journal of Research, DOI:
10.1080/03772063.2021.1905085

To link to this article:  https://doi.org/10.1080/03772063.2021.1905085

Published online: 31 Aug 2021.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tijr20
https://www.tandfonline.com/loi/tijr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03772063.2021.1905085
https://doi.org/10.1080/03772063.2021.1905085
https://www.tandfonline.com/action/authorSubmission?journalCode=tijr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tijr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03772063.2021.1905085
https://www.tandfonline.com/doi/mlt/10.1080/03772063.2021.1905085
http://crossmark.crossref.org/dialog/?doi=10.1080/03772063.2021.1905085&domain=pdf&date_stamp=2021-08-31
http://crossmark.crossref.org/dialog/?doi=10.1080/03772063.2021.1905085&domain=pdf&date_stamp=2021-08-31


IETE JOURNAL OF RESEARCH
https://doi.org/10.1080/03772063.2021.1905085

REVIEW ARTICLE

An Accurate Hybrid Approach for Electric Short-Term Load Forecasting

Alireza Sinaa and Damanjeet Kaurb

aFaculty member of ACECR and Research scholar in UIET, Panjab University, Chandigarh, India; bElectrical & Electronics Engineering, UIET,
Panjab University, Chandigarh, India

ABSTRACT
For efficient working of the power system, an accurate approach for short-term load forecasting
(STLF) is suggested. To improve the accuracy of forecasting, variousweather conditions, such as tem-
perature, humidity, dew point, wind chill, and wind speed, are considered and their impact on the
accuracy of load forecasting is studied in detail in terms of Mean Absolute Percentage Error (MAPE),
Root Mean Square Error (RMSE), and Maximum Error (ME) errors. The proposed hybrid approach
consists of Support Vector Regression (SVR) and fuzzy because SVR can forecast the ability of small
dataset and fuzzy system to handle non-linear weather conditions and uncertainty of load in fore-
casting. For load forecasting, time of the day, historical load i.e. previous one-month hourly load,
weather conditions, calendar days for the last 10 days, sunny time, temperature at the same time
in previous day, and average temperature of last three hours are taken into account. The proposed
approach provides accurate load forecasting for a day regardless of its being a working day or hol-
iday, while fewer days are used for load prediction viz. previous one month, while no special care
is taken for weekend. The suggested approach is tested on standard electricity datasets: EUNITE
network 1997 and New England of America of 2012and 2019. Simulation results show better effec-
tiveness and the superiority of the proposed approachwhen comparedwith other existingmethods
for daily load forecasting viz. ANN, Bayesian, and Least Square Support Vector Machine, etc.
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1. INTRODUCTION

The demand for electric energy is continuously increas-
ing, while the sources of energy are depleting day by
day. To meet load demand in this constrained environ-
ment it became important to forecast it accurately as it
affects the performance and operation of the power sys-
tem in many ways. There are many operations such as
unit commitment, economic load dispatch, etc. which
are directly influenced by the accuracy of forecasted load
[1]. The demand for energy always keeps on changing
in a day. Therefore, its accurate forecasting is a complex
problem due to changing weather conditions, varying
nature of load, and its effect on system performance.
Overestimation or underestimation of load forecasting
leads to additional spinning reserve, more expansion,
or adverse operation of the power system which fur-
ther cause uneconomical operation and unreliable power
system. Therefore, it is important to forecast short-term
load forecasting (STLF) in an efficient way for the proper
functioning of the power system [2].

In the early 1990s, power system privatization and dereg-
ulation came into existence which increased the impor-
tance of accurate STLF. As in the deregulated power
system, all power utilities are traded in the open market

for electricity and its day-ahead pricing [3]. Therefore for
the last four decades, researchers are working to devise a
suitable technique to forecast load demand.

Authors implemented ANN-based approaches for STLF
because of its high speed and quick response [4]. In
ANN, weights are updated in such a manner that error
is minimized. But later on, it was found that ANN-
based approaches face problems of large dataset for train-
ing, overfitting, and weight adjustment of connections
which is time-consuming. Afterwards, a few researchers
implemented an expert system-based method to solve
the problem [5,6]. Later on, Fuzzy set-based approaches
became common for STLF because of their capabilities
to model uncertainties in the data and give accurate
results [7–12]. One of the most important problems in
forecasting is many inputs.

To overcome the shortcomings of earlier methods and
increase the accuracy, authors devised more suitable
methods based on the state-space model [13], modi-
fied neural network [14–18], wavelet transform [16,19],
hybrid [14,20–23], and SVR [24–33]. Some important
papers are shown in Table 1 [13–23], while SVR-based
methods are discussed in detail [24–33].
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Table 1: : Various methods of load forecasting
Ref. No.: Method Time horizon

[13] State-Space models , Ensemble Kalman filter
(Enkf), Shrinkage/Multiple Linear Regression

1 interval one
week ahead

[14] Quantile Regression Neural Network using
Triangle Kernel Function (QRNNT)

1 interval one
week ahead

[15] Modified Generalized Regression Neural
Network (GRNN) Based a Multi-Objective
Firefly Algorithm (MOFA)

Half hourly

[16] Bayesian Neural Network (BNN), L2-Norm,
Wavelet Transform.

Half hourly

[17] Prediction Intervals (Pis), Lower Upper Bound
Estimation (LUBE), Neural Network (NN),
Particle Swarm Optimization (PSO)

1 interval one
week ahead

[18] Self-Organizing Map (SOM), K-Means
Algorithm, Multilayer Perceptron

1 interval one
week ahead

[19] Wavelet Transform, Grey Model, Particle Swarm
Optimization

1 interval one
week ahead

[20] Novel Ensemble Method, Wavelet Transform,
Extreme Learning Machine (Elm) and Partial
Least Squares Regression

1-h and 24-h
ahead

[21] Random Forest (RF), Neural Network (NN) and
Fuzzy Inductive Reasoning (FIR)

1 interval one
week ahead

[22] Temporal and Weather Condition Epi-Splines
Based Load Model (TWE)

Day-ahead
hourly load

[23] Novel Hybrid Evolutionary Fuzzy Model, Bio-,
Inspired Optimizer, So-called GES

1 interval one
week ahead

Among these, SVR-based methods are more common
because of easiness to comprehend the relationship
between input and output variables. SVR requires a small
dataset for regression and classifications. SVR overcomes
the ANN limitation by introducing SRM (Structural Risk
Minimization). But load forecasting is affected by various
non-linear factors that influence the accuracy of forecast-
ing. Therefore, authors used large datasets (more than
one year) for SVR training and testing and weather con-
ditions as input. SVRhas been usedwidely for one decade
for load forecasting [26–33].

The quality of solution of SVR is directly influenced by
the input parameters. Therefore,many researchers imple-
mented various techniques for tuning SVR parameters.
In this paper, literature survey of the existing techniques
using SVR is discussed in detail with respect to input
data size and its performance measure in terms of Mean
Absolute Percentage Error (MAPE).

In mid-1920s, Genetic Algorithm and simplex optimiza-
tion were implemented in combination for kernel and
parameter selection of SVR to increase the accuracy of
forecasting [25]. The proposed approach improves the
performance of SVR and yields MAPE of 0.76% for the
weekdays only. Authors applied SVR on EUNITE net-
work and New England of America network datasets and
SVR parameters are optimized using the social spider
optimization technique and obtained day ahead and next
week with an interval of 1 h [24]. The MAPE is reduced

to 1.495% and 0.746% for EUNITE and New England,
respectively.

Afterwards Chiang H W applied an immune algorithm
for SVR parameter tuning. They used a large dataset of
20 years for training, validation, and testing [26]. But the
accuracy is not so good. It has MAPE of 1.29% while the
temperature is taken into account [26]. To include cyclic
seasonal change in forecasting authors applied chaotic
artificial bee colony in addition to SVR to predict the
load of each month, while cyclic seasonal changes of data
are taken into account. To forecast load, a large dataset
of four and half years is considered for the forecasting
model, while MAPE is not improved much i.e. more
than 2% [27]. Later on, Hu Z. et al. applied Memetic
algorithm for feature selection and parameter optimiza-
tion simultaneously of SVR for better accuracy of load
forecasting. In this method, previous one-year hourly
load data and temperature are selected as input vari-
able for the forecasting model [28]. The approach yields
MAPE of 1.09% which is better than the earlier SVR
methods.

The selection of kernel function is one of the important
factors that affect the accuracy of SVR. Authors consid-
ered various kernels i.e. simple polynomial, radial basis
(RBF), and neural network kernel for classification and
regression models [34]. The study reveals that RBF ker-
nel yields smallest error [34]. Keeping this in view, in this
study, a radial basis kernel is used because of its good
performance [34,35].

Che J. et al. used multiple kernels for the learning of SVR
and selected the best individual kernel. But still, the pro-
posed approach results in MAPE more than 2% in all
kernel functions.While in this approach a small load data
are used for SVR training [29].

Later on, authors implemented PSO in addition to SVR
for parameter selection [30]. Ceperic E. et al. applied
PSO for optimizing hyper parameters of SVR, while fea-
ture selection algorithm is used to give effective input
data which decreased MAPE for 24-hour slightly from
2% to 1.99% while load data of more than two and
half years are considered for training one-year data for
testing [30].

Selakov A. et al. devised a hybrid approach using PSO
and Support Vector Machine (SVM) for load forecast-
ing while significant temperature variation is included
in the model [31]. For SVM training, 3-year historical
load and average temperature are considered. The sug-
gested approach yields MAPE of a small value of 1.85%.
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Table 2: Weather conditions inclusion in load forecasting
Reference Nos.: Time horizon

[13,14,16,19,21,23,24,29,30,34] Temperature
[13,14,19,21,24,30] Humidity
[16,19,23,24] Wind Speed
[30] Air Pressure
[31,21] Solar Radiation

Further to reduce MAPE error, authors applied modified
Firefly algorithm for parameter tuning of SVR which
yields MAPE of 1.6909%; 3-year load data are considered
for training and testing [32].

Yang Y. et al. suggested an incremental learning model
of SVR for better accurate load forecasting for a small
data size [33]. In this the dataset for load forecasting is
divided into different training sets in such a way that
initially a small subset of training set is used for the train-
ing of SVR, then an optimal training set is obtained for
the given subset which is added to the system. A recon-
struction method is used for re-training of SVR for this
additional input data.While SVR parameters are selected
using nested PSO, the MAPE is reduced to 1.1.8729% for
the load forecasting model [33].

For better forecasting of STLF, weather conditions viz.
temperature, humidity, andwind speed also influence the
accuracy significantly. If these factors are ignored, then
the most suitable technique cannot give an accurate solu-
tion. Therefore, it is important to consider temperature,
humidity, dew point, wind chill, wind speed, and calen-
dar days for accurate forecasting of load. Few authors
considered these factors as input variables and showed
them as in Table 2. It is clear from the literature survey
that many authors [13,14,16,19,21,23,24,29,30,34] have
taken the temperature variation, while other parameters
are ignored.

From the literature survey it is also found that the accu-
racy of load forecasting forweekend is less as compared to
weekdays because of less load data availability for week-
end. Few authors forecasted load for weekends, while a
special care is given for this [13,16,22].

For better understanding the role of weather condi-
tions, for the last two decades, authors applied artificial
intelligence-based approaches to select the most impor-
tant weather conditions for better accuracy. Z. Hu et
al. implemented artificial intelligence-based techniques
for load forecasting, while proper inputs parameters are
selected which increase the accuracy of forecasting and
reduce computational burden [36].

O. Abedinia et al. proposed a hybrid filter/wrapper fea-
ture selection technique for load forecasting. In this
Pennsylvania-New Jersey-Maryland (PJM) electricity
market data are used and the obtained MAPE for one
week are 0.95% [37] and Z. Hu et al. used the same
method for STLF and implemented North-American
electric utility as dataset, and obtained MAPE of 4.52%
[36]. Researchers used GA- and PSO-based methods for
feature selection [38].

In this work, feature selection is done using genetic
algorithm [39] which results in temperature, humidity,
and wind speed as more important weather conditions.

Takeda H. et al. suggested ensemble Kalman filter and
a multiple regression-based method for load forecast-
ing [13].

M. ghofrani et al. devised a hybrid approach based on
Bayesian neural networks. Authors used a historical load
of 5 years for load forecasting. To increase the accuracy of
weekend and special days (holidays) sub-series of input
set is considered which decreases MAPE for these days
to 0.419–1.559% for different sub-series [16].

Feng Y. et al. applied temporal and weather condi-
tions epi-spline-based load models. Temperature and
dew points are considered, while wind speed is ignored.
The proposed approach yields weighted MAPE of more
than 2% in all various seasons [22].

It is found that most of the authors modified/split the
large input dataset into subsets in order to increase the
accuracy of load forecasting for weekends.

Most of the articles written about STLF have tried to
improve the forecasting method or choose the right
method. But the results show that the accuracy obtained
depends on the quality of the data [40]. Y. Yuhang et
al. proposed a method for feature selection and filtered
abnormal data [41]. A. Yang et al. suggested a hybrid
model that consists of automatic correlation function
and least square SVMs in combination for forecasting.
The parameters in LSSVM are optimized with GreyWolf
optimization algorithm and Cross Validation [42]. Some
sub-series with high correlation and the main load series
are selected as features and input to the GRU network,
respectively, along with the main load series to select the
forecasting model [43].

From the literature survey, the following inferences are
drawn:
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• It is important to forecast load with a higher accu-
racy, with small dataset, and with no special efforts for
weekend/holidays.

• SVR is a successful tool for load forecasting. SVR per-
formance is directly affected by its parameter tuning.

Keeping the above points in view, in this paper, the fol-
lowing objectives are met.

Initially SVR important parameters, viz. C, ε, γ are
selected; the SVR model is trained and tested for small
datasets, while no special method is used for week-
end/holidays.

As SVR is the best tool for load forecasting, this method
has considerable accuracy for non-linear data. Because
load forecasting depends on non-linear variables such as
load, temperature, humidity, and wind speed, etc., these
variables are highly non-linear, so the kernel trick is used.

On the other hand, one of the influential factors in the
amount of electricity consumption is the issues related
to the weather conditions viz. temperature felt by peo-
ple, which is not necessarily equal to the temperature
indicated by the thermometer. To convert this qualitative
quantity into a numerical quantity, the average temper-
ature of the previous day, and previous three hours has
been used together. The best flexible tool that can make
flexible decisions is a fuzzy inference system. Therefore,
a fuzzy inference system has been used to generate the
correction factor. This hourly correction factor is multi-
plied by the forecasted hourly load value and creates the
final forecasted load value. By comparing the error rate,
it is found that adding a flexible fuzzy inference system
significantly reduces the error.

In this work, temperature, humidity, andwind speed con-
ditions that are taken collectively to increase the accuracy
of STLF are considered for load forecasting.

To find the accuracy of forecasting, MAPE, ME, and
RMSE errors are calculated which clearly indicates the
error in forecasted and actual load. MAPE has been
widely used in regression models as a loss function. It
has very intuitive interpretation in relative error so it is
widely used in the literature [44]. Therefore in this paper,
MAPE is used for comparison with other existing meth-
ods, while for the proposed approach all three errors i.e.
MAPE, RMSE, and ME are calculated.

Finally, to check the validity and suitability of the pro-
posed approach, it is tested on two standard datasets:
EUNITE network (EUropean Network on Intelligent

TEchnologies of 1997 [45] and New England Network
of America of years 2012 and 2019 [46]. The results
obtained, using the proposed approach, are compared
with the existing ANN, Fuzzy, Bayesian probabilistic, and
SVR-based techniques.Most research papers usedMAPE
as an indicator of accuracy of the suggested techniques.
But in this paper, MAPE, RMSE, and ME are also calcu-
lated for load forecasting for 24 h, weekday, weekend, and
one-week forecasting, respectively. Results are compared
for datasets using SVR and SVR-F. On comparison of the
result, it is found that the suggested approach yields better
results for load forecasting and has least MAPE, RMSE,
and ME for all cases than SVR and existing methods.

2. PROBLEM FORMULATION

In this section, the basics of SVR and result evaluation
criterion are introduced.

2.1 The SVR-based STLFMethod

SVM was developed by Cortes and Vapnik in 1995 [44].
SVM became common in various fields due to its ability
to solve problems. It has wide applications in classifica-
tion, regression problems, and load forecasting [26–33]
SVM is suitable for a non-linear problem by using a spe-
cific transformation function, the kernel function, which
maps the data from the original space into a higher
dimensional space where as hyperplane separates the
data linearly. The optimization procedure adjusts the
hyperplane in such a way that the elements of distinct
classes are farthest from the separating hyperplane. Re-
transforming of separating hyperplane into the original
n-dimensional space, the typical non-linear, usually non-
monotonic SVM-separating function emerges. SVM is
suitable not only for classification problem but also for
regression problem. Its all main features are retained as
in SVM.

This paper presents a novel approach to forecast load
for 1-h to 24-h with an interval of 1-h. Climate con-
ditions, small historical load, and calendar date are the
input parameters to the SVR system.

2.2 Basic Principles of SVR and Kernel Trick

The regression can be formulated as follows:

SVR works on a regression model. Suppose there is a
training dataset D, which has an input vector (xi), target
vector (ti), and output vectoryi, respectively. yi is defined
in such a way that it has the ability to track these vec-
tors. In practice, vectors may not be tracked correctly in
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some places, so the Vapnik’s loss Function penalty func-
tion, represented by L(t, y), is used to correct [24] and is
defined as follows:

D = {((xi,ti), yi)|i = 1, , . . . ,N} (1)

L(t, y) =
{
0 if |t − y| ≤ ε

|t − y| − ε otherwise
(2)

Function Lmust be calculated for all data. To do this, the
empirical risk function is defined as follows:

Remp = 1
N

∑
i
L(ti, yi) (3)

where N is the number of data. The simplest model for
the SVR technique is that the data are linear.

yi = wT · xi + b (4)

where w, b ∈ R.

In the linear model of SVR, Remp, and w2 are minimized
[28,35,47]. The key idea of the dual problem is to con-
struct a Lagrange function from the primal objective
function and the corresponding constraints, by introduc-
ing a dual set of variables.

L = 1
2
||w||2 + C

n∑
i=1

(ζi + ζ ∗
i ) − t − g − h

t =
n∑

i=1
(λiζi + λ∗

i ζ
∗
i ),

g =
n∑

i=1
∝i(ε + ζi − ti + (w.y + b))

h =
n∑

i=1
∝∗

i (ε + ζ ∗
i + ti + (w.y + b)) (5)

where L is the Lagrangian and ∝i,∝∗
i , λi, and λ∗

i are
Lagrange multipliers.

In this paper, the data are completely non-linear, so the
SVR with Kernel Trick is used [11,25]. An important
note here is that in the non-linear setting of the SVR, the
optimization problem corresponds to finding the flattest
function in feature space, not in input space [34,35].

Min − 1
2

n∑
i,j=1

(∝i− ∝∗
i )(∝j− ∝∗

j )K(xi.yj) − Vare

Vare = ε

n∑
i=1

(∝i+ ∝∗
i ) +

n∑
i=1

yi(∝i− ∝∗
i ) (6)

2.3 Result Evaluation

Tomeasure the accuracy of STLF,MAPE,ME, and RMSE
indicators are used [24]. Among these, MAPE is themost
common indicator for accuracy. Therefore, in this paper,
the accuracy of results is compared with MAPE.

These are:

(1) Mean Absolute Percentage Error (MAPE):

MAPE =
∑n

l=1

∣∣∣Actual loadl - forecasted loadl
forecasted loadl

∣∣∣
n

(7)

(2) Maximum Error (ME):

ME = Max|Actual loadl - forecasted loadl| (8)

(3) Root Mean Square Error(RMSE):

RMSE =
√∑n

l=1 (Actual loadl - forecasted loadl)2

n
(9)

where l is the hour of day (0 till 23) and n is 24 (Hours in
a day).

2.4 Fuzzy Rules for Short-Term Load Forecasting

An accurate load forecasting is a challenge and for the
last three decades fuzzy logic-based approaches became
common for STLF because of their capabilities to model
uncertainties in the data, absorb human experience, and
give desired accurate results [7–12,48], as discussed in
Section 1.

The structure of fuzzy inference consists of three concep-
tual components, namely Rule Base containing a selec-
tion of fuzzy rules; Database defining the membership
functions which are used in the fuzzy rules, and Reason-
ing mechanism that performs the inference procedure
upon the rules and gives facts and reasonable output or
conclusion. In this paper, for fuzzy logic ‘and’ stand for
‘min’ and ‘or’ for ‘max’ [48].

But fuzzy, one of the important issues in load forecasting,
has many inputs. This is reduced with the help of SVR.

To utilize fuzzy logic effectively, in this paper, it is used
in combination with SVR which can give accurate results
with lesser data. After SVR output, fewer number of
variables are taken into account in the fuzzy system, as
explained in Section 3.3, which improves the accuracy of
load forecasting. Therefore in this paper, best advantages
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of SVR and fuzzy are utilized for the better accuracy of
results.

3. SOLUTION APPROACH

In this section, basic steps of the solution approach are
discussed. Firstly SVR parameters are selected followed
by feature selection for given weather conditions. After-
wards fuzzy rules for load forecasting are discussed and
different error calculations are defined.

In this paper, a SVR-Fuzzy approach for STLF is pro-
posed. The proposed approach is tested on three standard
datasets of EUNITE network and New England Network
in two different years.

3.1 SVR Parameter Selection

Step 1-Read hourly load demand of each day, calendar
days, and other climatic conditions for a given dataset.

Step 2-Divide the given dataset into two sets i.e. training
and testing datasets.

Step 3-During SVR training, select SVR parameters
C, ε, γ by varying values for C = 1 : 2 : 100; ε = 0 :
0.001 : 3, andγ = 0 : 0.005 : 1.

Step 4-Evaluate MAPE as given in Equation (7).

Step 5-Select the best SVR parameters corresponding to
least MAPE.

Step 6-Test SVR for a day/weekend/weekday/week with
obtained values of C, ε, γ as in Step 5 and weather condi-
tions.

3.2 Feature Selection of Weather Parameters

To select the best weather parameters among tempera-
ture, humidity, dew point, wind chill, and wind speed,
feature selection is done to understand their impor-
tance. In feature selection, the aim is to determine the
most effective weather conditions. The presence of these
reduces the MAPE of SVR.

To select the most vital weather conditions, the steps of
feature selection usingwell-established population-based
genetic algorithm is as given below [39]:

Step 1: Initialization

Set the number of chromosome, number of max-
iteration, define the features (Temperature, Humidity,
Wind Speed, Wind Chill, and Dew Point), set GA opera-
tors, and define fitness function.

Step 2: Iteration

Set Iteration = 1 to max-iteration

Set randomly generated chromosome for the selection of
feature.

Run SVR and calculate MAPE as in Equation (7).

Step 3: Selection

Store chromosome with best fitness i.e. least MAPE.

Select two parents from a population according to
their fitness (the better fitness, the bigger chance to be
selected).

Step 4: Crossover

Apply a crossover probability to cross over the parents to
form new offspring (children).

Step 5: Mutation

Apply a mutation operator to mutate new offspring.

Step 6: Replace

Replace the old offspring with newly generated offspring
for the next iterations.

Go to step 2.

In the present work, a population size of 100 is taken,
while 1000 iterations are considered. The weather con-
ditions are used as input to the SVR technique. MAPE
has been evaluated as a fitness function for a given num-
ber of iterations. The feature selection is performed for
all three datasets. Finally, the variables that accounted for
least MAPE are temperature, humidity, and wind speed.
Therefore, in this paper, only these three variables have
been used as weather condition variables in STLF. The
best solution is achieved in the presence of temperature,
humidity, and wind speed as input variables and SVR
results in MAPE of 1.1682% and 1.1201 for EUNITE,
and New England datasets, respectively. It is clear from
the above discussion that temperature, humidity, and
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Figure 1: Input parameters of the proposed approach

wind speed are the most important factors that affect the
accuracy of STLF.

3.3 Fuzzy Inference System

Step 1: Read Inputs: (Time, forecasted load using SVR,
Average Temperature of the previous day, and Average
Temperature in previous 3 h).

Step 2: Fuzzification of inputs.

Step 3: Frame fuzzy rules for fuzzy inference system.

Step 4: Defuzzification for load forecasting and MAPE.

In this paper, the inputs to fuzzy inference system consist
of forecasted load of SVR, duration of the sunshine in a
day (Time), the average temperature in the previous day
(Av_Temp), and the average temperature during the last
3 h (Av_Temp_3H), as shown in Figure 1.

To improve the results obtained using SVR, fuzzy rules
are framed as given in Table 3 which further improves
the quality of the solution. For the fuzzy system, the
input variable ‘Time’ is expressed in linguistic variables
using fuzzy set notations such as morning (MO), noon
(NO), afternoon (AN), evening (EV), and night (NI).

The second and third input variables are ‘Av_Temp’
and‘Av_Temp_3H’ of the same day which are expressed
in linguistic variables using fuzzy set notations, as men-
tioned in Table 3. The output variable is ‘Gain’ and
expressed in some linguistic variables using fuzzy set
notations such as very decrease (VD), decrease (D), small
(S), increase (I), and very increase (VI). The fuzzy rules
are interpreted as if ‘Time’ is MO and ‘Av_Temp’ is VC
and ‘Av_Temp_3H’ is VC, then the output (Gain) is S.
The fuzzy membership functions are shown in Figure 2.
The solution approach is presented in a flowchart in
Figure 3.

4. RESULTS ANDDISCUSSIONS

In this section the proposed approach is tested on
EUNITE network (January–February in 1997) and New
England Network (January–February in 2012 and 2019).
For the training of SVR for EUNITE network time period
from 1st January 1997 to 26th January in 1997 is con-
sidered, while for New England (2012 and 2019) it is
from 1st January to 26th January. The remaining data
of EUNITE network and New England (2012 and 2019)
Network are considered for testing of SVR-F in both
cases. The datasets consist of information of hourly load
demand/day, calendar day (working days, semi-weekend,
and weekend), hourly temperature, humidity, and wind
speed.

4.1 Eunite Network (January–February in 1997)

The proposed approach is tested on EUNITE network
1997 dataset which has the information on load, hourly
temperature, humidity, dew point, wind chill, and wind
speed.

Initially, for load forecasting, SVR parameters are tuned
by changing the values of C, ε, γ from {1, 0, 0} to
{100, 3, 1} with a step size of {2, 0.001, 0.005}, respec-
tively. SVR performance in MAPE is calculated for these
variables, as discussed in Section 3.1 which results C =
48, ε = 0.005, γ = 0.015 as they have high accuracy and
least MAPE error.

Table 3: Fuzzy rules
Time

MO NO AN EV NI

Temp

VC C N VC C N VC C N VC C N VC C N

Av_Temp_3H VC VD VI VD VI VI VI I S I D I S VD D S
C VD D VD I VI I S I I VD S I S S S
N VD VD D I S D S I I D D I S S S

Note: VC-Very Cool, C-cool, N-Normal, VD-Very decrease, D-Decrease, S-Small, I-Increase, VI-Very increase.
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Figure 2: (a) Fuzzy memberships for a day, (b) Fuzzy member-
ships for the previous day, (c) Fuzzy memberships for the average
temperature of 3 h of the same day, and (d) Gain variables of fuzzy
members

The training of SVR is done for load demand from
1st January 1997 to 26th January in 1997 considering
selected weather conditions viz. temperature, humidity,
wind chill, and dew point for working and weekend.

Figure 3: Algorithm of SVR-Fuzzy

The trained SVR model is tested for load forecasting for
24-hour, a week, weekdays, and weekend.

To check the effectiveness of the proposed approach for
STLF, it is applied to forecast load for 24-hour with an
interval of 1-hour. The results of load forecasting of 27th
January 1997 using SVR are shown in the third column
of Table 4. This output is given to fuzzy, as discussed in
Section 3.3. It is clear from the fourth column of Table
4 that SVR-F forecasts a load which is more close to the
actual load. On calculatingMAPE it is found that in SVR-
F results a small average error of 24 h is 0.27%while in the
case of SVR it is 1.17%.WhileME andRMSE for the same
are 5.18%and 2.41%, respectively, which is again less than
SVR as depicted in columns eighth and tenth of Table 4.
Comparing the results of SVR and SVR-F, it is found that
there is a reduction of ME to 44.60% and RMSE to 71.9%
in SVR-F, respectively.

The effectiveness and applicability of the proposed
approach are tested by forecasting load for one week
(27th January 1997 to 2nd February 1997). The MAPE
obtained using SVR and SVR-Fuzzy for one week with
an interval of one hour is given in Table 5 and shown in
Figure 4. It is clear from Figure 4 that values of real and
forecasted load are very near to each other and SVR-F
results in a very small error of 0.0079. TheAverageMAPE
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Table 4: Load forecasting for EUNITE network using SVR and SVR-Fuzzy for 24 h
Actual Load forecast Load forecast MAPE-SVR MAPE-FSVR

Hour load (SVR) (FSVR) (%) (%) ME-SVR ME-FSVR RMSE-SVR RMSE-FSVR

0 707 715.3828 706.1723 1.19 0.12 8.3828 0.8276 8.3828 0.8276
1 688 696.7553 687.7844 1.27 0.03 8.7553 0.2153 8.7553 0.2153
2 690 698.7161 689.7203 1.26 0.04 8.7161 0.2797 8.7161 0.2797
3 663 672.2455 663.5905 1.39 0.09 9.2455 0.5905 9.2455 0.5905
4 656 665.3828 656.9067 1.43 0.14 9.3828 0.9066 9.3828 0.9066
5 683 691.8534 683.2290 1.30 0.03 8.8534 0.2290 8.8534 0.2290
6 707 715.3828 706.7181 1.19 0.04 8.3828 0.2819 8.3828 0.2819
7 760 751.2455 762.7886 1.15 0.37 8.7545 2.7886 8.7545 2.7886
8 757 748.3043 759.8022 1.15 0.37 8.6957 2.8022 8.6956 2.8022
9 744 735.5592 746.8613 1.13 0.38 8.4408 2.8613 8.4407 2.8613
10 743 734.5788 745.8658 1.13 0.39 8.4211 2.8658 8.4211 2.8658
11 766 757.1279 768.7613 1.16 0.36 8.8721 2.7613 8.8721 2.7613
12 746 737.520 749.2639 1.14 0.44 8.4800 3.2639 8.4800 3.2639
13 767 758.1083 770.1800 1.16 0.41 8.8917 3.1800 8.8917 3.1801
14 750 741.4416 750.9718 1.14 0.13 8.5584 0.9718 8.5584 0.9718
15 740 731.6377 739.9132 1.13 0.01 8.3623 0.0868 8.3623 0.0867
16 727 724.0214 727.8330 0.41 0.11 2.9786 0.8330 2.9786 0.8330
17 761 752.2259 756.1860 1.15 0.63 8.7741 4.8140 8.7741 4.8139
18 787 777.7161 781.8104 1.18 0.66 9.2839 5.1896 9.2839 5.1896
19 788 778.6965 788.4308 1.18 0.05 9.3035 0.4308 9.3035 0.4308
20 779 769.8730 776.5166 1.17 0.32 9.1270 2.4834 9.1270 2.4834
21 763 754.1867 760.6949 1.16 0.30 8.8133 2.3050 8.8133 2.3050
22 703 711.4612 705.6017 1.20 0.37 8.4612 2.6017 8.4612 2.6017
23 698 706.5592 700.7401 1.23 0.39 8.5592 2.7402 8.5592 2.7401

– – – – 1.17 0.27 9.3828 5.1896 8.6042 2.4172

Table 5: Load forecasting for EUNITE network using SVR and SVR-Fuzzy for 24 h
Day Date MAPE-SVR (%) MAPE-FSVR (%) ME-SVR ME-FSVR RMSE-SVR RMSE-FSVR

Monday 27/01/1997 1.17 0.27 9.3828 5.1896 8.6042 2.4172
Tuesday 28/01/1997 1.02 0.71 7.2679 4.0542 6.4705 2.0418
Wednesday 29/01/1997 1.09 0.83 10.0017 5.8132 8.7108 3.2135
Thursday 30/01/1997 1.11 0.65 7.0035 4.8345 6.1726 1.7846
Friday 31/01/1997 1.16 0.75 9.184 5.7491 8.2341 2.6148
Saturday 01/02/1997 1.16 0.02 11.1080 6.9045 10.0704 5.6081
Sunday 02/02/1997 1.36 1.30 13.1460 7.8413 11.2505 6.1207

Ave. —- 1.16 0.79 9.5848 5.7695 8.5019 3.4001

Figure 4: Load prediction using SVR and SVR-F for one week

for each day of one week is compared using SVR and
SVR-Fuzzy is shown in Figure 5. It is clear from Figure 5
that SVR-F results in less MAPE on all day as compared

Figure 5: Comparison of MAPE using SVR and SVR-F for a week

to SVR. This difference is due to the inclusion of fuzzy
with SVR which improves the quality of the solution by
minimizing the value of MAPE. Similar observations are
made for RMSE and ME error using SVR-F.
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Figure 6: Comparison between actual load and prediction load
for workday and weekend.

To check the performance of the suggested approach,
results are compared for working day and week day. As
in the literature special data creation is done for week-
end/holidays. But in the proposed work, no special data
manipulation or consideration is taken into account. The
results of actual load and forecasted load for working day
(27/01/1997) and weekend (02/02/1997) are comparable
as shown in Figure 6. It is clear from Figure 6 that in both
cases the actual load and forecasted load has a small error

i.e. in the case of working day it is 0.0027, while 0.01030
for weekend which is comparable.

Hence it is clear from the above discussion that the sug-
gested approach is able to forecast load accurately for
all types of cases i.e. weekdays, working day, for a small
interval of 1 h to 24-hour, and for one week.

4.2 New England (January–February in 2012)

To check the accuracy of the proposed approach, it is
implemented on another dataset New England Network
2012. The proposed approach is tested on the forecast-
ing load for 24 h, one week, weekdays, and weekends. As
explained for earlier dataset 1st January to 26th January
data is taken for the training of SVR and remaining data
for testing purposes.

Similar steps are taken for SVR parameter tuning, train-
ing, and testing, as mentioned in Section 3.1. Fuzzy rules
are framed as given in Section 3.3. For the given dataset
values C, ε, γ are taken as in EUNITE network 1997.

After parameter selection, SVR-F is applied to forecast
the load for 27th January 2012 for 24 h with an interval
1 h which results in load forecasting, as mentioned in the
fourth column of Table 6. On looking at Table 6, it is clear
that SVR-F forecasts load in various load conditionsmore
accurately i.e. very close to the actual load. It has very
small MAPE, ME, and RMSE errors 0.62%, 0.1149, and

Table 6: Load forecasting for New England (2012) network using SVR and SVR-Fuzzy for 24 h.
Hour Actual load Load forecast (SVR) Load forecast (FSVR) MAPE-SVR (%) MAPE-FSVR (%) ME-SVR ME-FSVR RMSE-SVR RMSE-FSVR

0 10.9 11.092465 11.001076 01.76 0.92 0.1925 0.1010 0.1925 0.1010
1 10.5 10.700308 10.612150 01.91 1.06 0.2003 0.1121 0.2003 0.1121
2 10.5 10.700308 10.612150 1.91 1.06 0.2003 0.1121 0.2003 0.1121
3 10.4 10.602268 10.514918 1.94 1.10 0.2023 0.1149 0.2023 0.1149
4 10.4 10.602268 10.514918 1.94 1.10 0.2023 0.1149 0.2023 0.1149
5 11.4 11.582661 11.487233 1.60 0.76 0.1827 0.0872 0.1827 0.0872
6 13.8 13.935602 13.870418 0.98 0.51 0.1356 0.0704 0.1356 0.0704
7 14.8 14.675994 14.903967 0.84 0.70 0.1240 0.1039 0.1240 0.1039
8 15 14.872072 15.102642 0.85 0.68 0.1279 0.1026 0.1279 0.1026
9 15.1 14.970112 15.208522 0.86 0.71 0.1299 0.1085 0.1299 0.1085
10 15.2 15.068151 15.307169 0.87 0.70 0.1318 0.1071 0.1318 0.1071
11 15.2 15.068151 15.304287 0.87 0.68 0.1318 0.1042 0.1318 0.1042
12 15 14.872072 15.103091 0.85 0.68 0.1279 0.1030 0.1279 0.1030
13 14.8 14.675994 14.902461 0.84 0.69 0.1240 0.1024 0.1240 0.1024
14 14.5 14.595693 14.574345 0.66 0.51 0.0956 0.0743 0.0956 0.0743
15 14.6 14.595693 14.574345 0.03 017 0.0043 0.0256 0.0043 0.0256
16 15.3 15.166190 15.246153 0.87 0.35 0.1338 0.0538 0.1338 0.0538
17 16.5 16.342661 16.428824 0.95 0.43 0.1573 0.0711 0.1573 0.0711
18 16.1 15.950504 16.034600 0.93 0.40 0.1494 0.0653 0.1494 0.0653
19 15.6 15.460308 15.541819 0.89 0.37 0.1396 0.0581 0.1396 0.0581
20 15 14.872072 14.950482 0.85 0.33 0.1279 0.0495 0.1279 0.0495
21 14.2 14.327759 14.209709 0.90 0.06 0.1277 0.0097 0.1277 0.0097
22 13.1 13.249327 13.140169 1.14 0.30 0.1493 0.0401 0.1493 0.0401
23 11.9 12.072857 11.973391 1.45 0.61 0.1728 0.0733 0.1728 0.0733

– – – – 1.11 0.62 0.2023 0.1149 0.1506 0.0872
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Figure 7: Predicting load by SVR and SVR-F for one week (27th
January 2012 to 2nd February 2012)

Figure 8: Comparison of MAPE using SVR and SVR-F for a week

0.0872, respectively, which is 44.14%, 43.2%, and 42.09%
less than using SVR.

The same hourly approach is extended for load forecast-
ing for one week from 27th January 2012–2nd February
2012. The results are shown in Figure 7 which is approx-
imately the same as the actual load. For one week SVR-F
results averageMAPE of 0.0066 which is 36.74% less than
SVR.On looking at the third and fourth columns of Table
7 the average MAPE, ME, and RMSE per day in SVR-F
is less than MAPE per day in SVR for the whole week.
Looking at Figure 8, it is found that for all days average
MAPE in SVR-F is less than SVR. The maximumMAPE
for SVR-F in seven days is 1.23%,while it is 1.28% in SVR.

It is always difficult to forecast load during holi-
days/weekendbecause of the small-sized dataset available
for these days. The suggested approach proves efficient in

Figure 9: Comparison between actual load and prediction load
for workday and weekend

forecasting load for weekend/holidays without any data
manipulation. When 24 h load is forecasted on weekend
i.e. 29/01/2012 it shows a similar pattern as on week-
day (27/01/2012) with good accuracy, as shown in Figure
9. These results are obtained even with a small dataset
because the suggested approach takes fewer previous day
data for load forecasting which makes it suitable to fore-
cast load for weekend with less error i.e. 1.23%.

4.3 New England Network (January and February
in 2019)

The suggested approach is tested on New England (2019)
Network dataset. Like the previous two datasets, the load
forecasting is done on an hourly basis and from 1st
January to 26th January 2019 as training data and the
remaining data are considered for the testing of SVR-F in
both cases. The forecasting is done for day-ahead and a
week. The SVR parameters are as considered in EUNITE
network 1997.

Load forecasting is done for 27th January 2019 for 24 h
with an interval of 1 h. The same procedure is carried in
two earlier datasets. The obtained results are mentioned
in the fourth column of Table 8. On looking at Table 8,
it is clear that SVR-F forecast load in various load condi-
tions (weekdays and weekend) more accurately i.e. very
close to the actual load. It has very small MAPE, ME,
and RMSE errors 0.13%, 0.0366, and 0.0203, respectively,
which is 44.8%, 50%, and 45.92% less than using SVR.

To check the efficacy of the proposed approach, load
forecasting for one week from 27th January 2019 to 2nd
February 2019 using SVR and SVR-F is studied. For one
week SVR-F results in an average MAPE of 0.19% which
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Table 7: Load forecasting forNewEnglandweek (27th Jan–2ndFeb2012) usingSVRandSVR-Fuzzy
Day Date MAPE-SVR (%) MAPE-FSVR (%) ME-SVR ME-FSVR RMSE-SVR RMSE-FSVR

Monday 27/01/2012 1.11 0.62 0.1446 0.0819 0.1506 0.0872
Tuesday 28/01/2012 1.12 1.03 0.1617 0.1501 0.1661 0.1529
Wednesday 29/01/2012 1.28 1.23 0.2108 0.1892 0.2231 0.1956
Thursday 30/01/2012 1.12 0.87 0.1586 0.1115 0.1714 0.1185
Friday 31/01/2012 1.08 0.36 0.1371 0.0525 0.1436 0.0594
Saturday 01/02/2012 0.84 0.34 0.1089 0.0481 0.1121 0.0545
Sunday 02/02/2012 0.78 0.16 0.0918 0.0042 0.0961 0.0107

Ave. – 1.04 0.65 0.1447 0.0910 0.1518 0.0969

Table 8: Load forecasting for New England (2019) network using SVR and SVR-Fuzzy for 24 h.
Hour Actual load Load forecast (SVR) Load forecast (FSVR) MAPE-SVR (%) MAPE-FSVR (%) ME-SVR ME-FSVR RMSE-SVR RMSE-FSVR

0 12.42 12.481317 12.4467 0.49 0.21 0.0613 0.0267 0.0037 0.0007
1 12.35 12.412689 12.3782 0.50 0.22 0.0626 0.0282 0.00393 0.0007
2 12.51 12.569552 12.5347 0.47 0.19 0.0595 0.0247 0.0035 0.0006
3 12.50 12.559748 12.5249 0.47 0.19 0.0597 0.0249 0.0035 0.0006
4 12.76 12.814650 12.7791 0.42 0.14 0.0546 0.0191 0.0029 0.0003
5 13.38 13.422493 13.3852 0.31 0.03 0.0424 0.0052 0.0018 2.7E-05
6 14.86 14.841160 14.8505 0.12 0.06 0.0188 0.0095 0.0003 9.0E-05
7 15.67 15.635278 15.6526 0.22 0.11 0.0347 0.0174 0.0012 0.0003
8 15.71 15.674493 15.6922 0.22 0.11 0.0355 0.0178 0.0012 0.0003
9 15.60 15.566650 15.5833 0.21 0.10 0.0333 0.0167 0.0011 0.0002
10 15.58 15.547042 15.5635 0.21 0.10 0.0329 0.0165 0.0014 0.0002
11 15.45 15.419591 15.4348 0.19 0.09 0.0304 0.0152 0.0009 0.0002
12 15.23 15.203905 15.2169 0.17 0.08 0.0260 0.0131 0.0006 0.0001
13 15.22 15.194101 15.207 0.17 0.08 0.0258 0.013 0.0006 0.0001
14 15.20 15.174493 15.1872 0.16 0.08 0.0255 0.0128 0.0006 0.0001
15 15.21 15.184297 15.1971 0.16 0.08 0.0257 0.0129 0.0006 0.0001
16 15.90 15.860768 15.8803 0.24 0.12 0.0392 0.0197 0.0015 0.0003
17 16.95 16.89018 16.9201 0.35 0.176 0.0598 0.0299 0.0035 0.0008
18 16.48 16.429395 16.4547 0.30 0.15 0.0506 0.0253 0.0025 0.0006
19 15.57 15.537238 15.5536 0.21 0.10 0.0327 0.0164 0.0010 0.0002
20 14.73 14.723177 14.7265 0.04 0.02 0.0068 0.0035 4.6E-05 1.2E-05
21 13.80 13.834258 13.8171 0.24 0.12 0.0342 0.0171 0.0011 0.0002
22 12.56 12.618572 12.5893 0.46 0.23 0.0585 0.0293 0.0032 0.0008
23 11.81 11.88327 11.8466 0.62 0.30 0.0732 0.0366 0.0053 0.0013

– – – – 0.29 0.13 0.0732 0.0366 0.0442 0.0203

is 59% less than SVR. On looking at the third and fourth
columns of Table 9 the average MAPE, ME, and RMSE
per day in SVR-F is less than MAPE per day in SVR
for the whole week. It is found that for all days average
MAPE in SVR-F is less than SVR. The maximumMAPE
for SVR-F in seven days is 0.25%,while it is 0.42% in SVR.

From the above discussion after implementing the pro-
posed approach on three dataset, it can be concluded
that the presented SVR-F always have fewer errors RMSE,
ME, and MAPE for weekdays, weekend/holiday and a
week. Basically, SVR-F modifies the results of SVR with

the fuzzy system which has an output of SVR forecasted
load and with a small data of previous 3 h and a previous
day. The improvement of results is due to the integration
of fuzzy with SVR which is the most widely used tool for
regression models.

4.4 Comparison with Other Existing Techniques

The MAPE obtained using the proposed approach
(fuzzy-SVR) is compared with the existing SVR
[28,30,33], fuzzy [8,12,23], ANN [49–52], Bayesian Prob-
abilistic [53], general regression neural network [54],

Table 9: Load forecasting for New England 2019 using SVR and SVR-Fuzzy for 24 h
Day Date MAPE-SVR (%) MAPE-FSVR (%) ME-SVR ME-FSVR RMSE-SVR RMSE-FSVR

Monday 27/01/2019 0.42 0.22 0.1319 0.0572 0.0796 0.0367
Tuesday 28/01/2019 0.23 0.22 0.05865 0.0351 0.0665 0.0316
Wednesday 29/01/2019 0.29 0.13 0.0732 0.0366 0.0442 0.0204
Thursday 30/01/2019 0.32 0.25 0.0843 0.0658 0.0928 0.0401
Friday 31/01/2019 0.37 0.19 0.0791 0.0542 0.0712 0.0328
Saturday 01/02/2019 0.29 0.14 0.0884 0.0425 0.0564 0.0254
Sunday 02/02/2019 0.29 0.21 0.1051 0.0626 0.0624 0.0326

Ave. – 0.316 0.19 0.0887 0.05057 0.06758 0.03137
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Table 10: MAPE (%) value of the proposedmethod and other STLF techniques
Ref. Weather conditions Method Dataset MAPE (%)

[28] Temperature SVR North American-1988 1.09
[30] Temperature, Humidity, Air Pressure SVR New Enlgand-2006 1.31
[33] Temperature, Wind Speed SVR China 1.18
[12] Temperature, Wind Speed Fuzzy Canada-1994 0.7
[8] Temperature Fuzzy Time Series Malaysia 2010 2.89
[23] Temperature, Wind Speed Fuzzy EirGrid-2014 1.22
[49] Temperature ANN North American-1988 1.68
[51] Temperature, Humidity, Wind Speed Gradient Boosting AEMO-2017 10.8
[50] Temperature, Dry Bulb, Dew Point ANN PJM-2011, New England-2011 2.231.18
[55] Temperature, Natural Illumination SVM Rostov Russia 1.58
[52] Temperature DRN New Enlgand-2006 1.44
[54] Temperature GRNN China 0.81
[53] Temperature, Dew Point Bayesian Probabilistic New Enlgand-2017 2.02
[42] Temperature, Humidity, Wind Speed LSSVM PJM-2015 1.31

EUNITE -1997 0.27
Proposed Temperature, Humidity, Wind Speed FUZZY-SVR New Enlgand-2012 0.62
Method New Enlgand-2019 0.13

and SVM, LSSVM-based methods [42,55]. The results
of various methods for various datasets in the presence
of weather conditions are given in Table 10. It is evi-
dent from Table 10 that SVR shows best performance
among various existing neural network, LSSVM, and
fuzzy-based approaches. While the proposed approach
gives better results in all datasets in the presence of tem-
perature, humidity, and wind speed, while a few days of
historical data are used as input. The minimum MAPE
using SVR as in Ref [28] is 1.09%, while in fuzzy [12]
is 0.7%. Other Bayesian probabilistic in the presence of
temperature and dew point it has MAPE of 2.02% for
New England dataset of the year 2017 [53]. In Ref [42],
the same weather conditions are considered as in the
present work, linear square SVM results in an error of
1.31% which is more than the suggested approach in all
the datasets.

5. CONCLUSION

In this paper, a novel technique is proposed for STLF
and tested on two standard networks i.e. EUNITE-1997,
New England-2012 and 2019. The proposed method
includes SVR and fuzzy inference system. To select the
best weather parameters among temperature, humidity,
dew point, wind chill, and wind speed, feature selection
via genetic algorithm is done. Using GA, three variables
i.e. temperature, humidity, and wind speed are identi-
fied as the most influential parameters in STLF and two
variables wind chill and dew point are removed from the
list of variables related to weather conditions. On apply-
ing the suggested approach, MAPE obtained using SVR
technique for networks EUNITE-1997, New England-
2012 and 2019 for one-week load forecasting with an
interval of one hour is 0.316%, 1.04%, and 1.16, respec-
tively. To improve the STLF accuracy, a fuzzy inference

system has been added to the SVR technique, causing
MAPE to reduce at 0.19%, 0.65%, and 0.79%, respectively.
The hybrid fuzzy inference system and SVR technique
improved the accuracy of STLF by 39.8%, 37.5%, and
31.9% for 1997, 2012, and 2019, respectively, for standard
networks (EUNITE 1997, New England). In general, the
proposed method reduces the MAPE error by 0.56% and
1.89% for the standard networks of EUNITE-1997 and
New England-2019 as compared to the existingmethods.

The suggested approach has more accuracy because of
the inclusion of important input weather parameters and
fuzzy in addition to SVR. The nonlinearity of weather
conditions is successfully handled with a fuzzy inference
system. The fuzzy system applies a correction factor by
combining input variables such as load value of predicted
load using SVR, average temperature information in the
previous three hours, as well as the average tempera-
ture in the previous day and significantly improves the
accuracy of load prediction.
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